People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Infante Ingrid, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023VO2 stabilization on Si for memristor in neuromorphic computing applications
- 2023Interplay between Strain and Defects at the Interfaces of Ultra‐Thin Hf 0.5 Zr 0.5 O 2 ‐Based Ferroelectric Capacitorscitations
- 2023Thermal information processing using phase change materials
- 2021Electrical Characterisation of HfZrO2 Ferroelectric Tunnel Junctions for Neuromorphic Application
- 2021Développement d’un capteur environnemental ultra-basse consommation à base de SnO2 en technologie CMOS FDSOI
- 2021Structure, chemical analysis, and ferroelectric properties of chemical solution derived epitaxial PbZr$_{0.2}$Ti$_{0.8}$O$_3$ films for nanomechanical switching
- 2021Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
- 2021Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
Places of action
Organizations | Location | People |
---|
document
Impact of a dielectric layer at TiN/HfZrO2 interface for ferroelectric tunnel junctions applications
Abstract
Thediscoveryofmemristor,theorizedin1971byL.Chua,hasledtothedevelopmentof novelartificialneuromorphicconceptsanddevices, includingferroelectric-basedones. FerroelectricTunnelJunction(FTJ)typememristorsbasedonzirconium-dopedhafniumoxide, (HZO), have recently displayed synaptic learning capabilities [1]. In addition, HZO processes are already fully compatible with silicon CMOS industry with oxide layers thinner than 10 nm. In the present work, the HZO layer is realized by room temperature magnetron sputtering of a ceramic target and subsequently crystallizedbyrapidthermalannealing[2].Thetitaniumnitride(TiN)bottom(BE)andtop (TE)electrodesarerealizedbyreactivemagnetronsputteringofatarget.Weexploredtheimpactoftheinsertionofanultra-thinbufferlayerattheHZO/TEinterfaceonthe stabilizedcrystallinephaseandmicrostructure,bandstructurealignmentandelectrical properties of thin HZO films. We investigated two materials,and. Behind the annealing processandturned intoandrespectively, following the creation of oxygen vacancies inside the HZO barrier. We exploited X-ray photoemission spectroscopy to analyse the chemistry and the electronic state of the HZO/electrode interface. X-rayreflectometry and grazing incidence X-ray diffraction were used to probe the thickness and structuralcharacteristicsoftheHZOlayer,whoseferroelectricityisassociated tothe polar orthorhombicphase.Wewilldiscussourresultsintheframeworkofstructural,chemical andphysicalpropertiesoftheferroelectric/TEinterfaceanditseffectontheelectrical properties of thin HZO-based junctions.References:[1] L. Chen et al., “Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junctionsynapses for hardware neural network applications,” Nanoscale, vol. 10, no. 33, pp.15826–15833, 2018, doi: 10.1039/c8nr04734k.[2] J. Bouaziz, P. R. Romeo, N. Baboux, and B. Vilquin, “Huge Reduction of the Wake-UpEffect in Ferroelectric HZO Thin Films,” ACS Appl. Electron. Mater., vol. 1, no. 9, pp.1740–1745, 2019, doi: 10.1021/acsaelm.9b00367.