Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fischer, Franz Dieter

  • Google
  • 19
  • 49
  • 1012

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2022Strain and interface energy of ellipsoidal inclusions subjected to volumetric eigenstrains: shape factors3citations
  • 2021An atomistic view on Oxygen, antisites and vacancies in the γ-TiAl phase5citations
  • 2020Cycled hydrogen permeation through Armco iron – A joint experimental and modeling approach32citations
  • 2020Damage tolerance of lamellar bone27citations
  • 2019The creep behavior of a fully lamellar γ-TiAl based alloy28citations
  • 2019Unifcation of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steels20citations
  • 2018The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys27citations
  • 2016Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing $gamma$-TiAl based alloy65citations
  • 2011Bioinspired Design Criteria for Damage-Resistant Materials with Periodically Varying Microstructure186citations
  • 2010A kinetic model of the transformation of a micropatterned amorphous precursor into a porous single crystal30citations
  • 2005Martensitic phase transformations of bulk nanocrystalline NiTi alloyscitations
  • 2003Effect of back stress evolution due to martensitic transformation on iso-volume fraction lines in a Cr-Ni-Mo-Al-Ti maraging steel20citations
  • 2002Back stress evolution and iso-volume fraction lines in a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformation15citations
  • 2002Theory, experiments and numerical modelling of phase transformations with emphasis on TRIPcitations
  • 2001Upsetting of cylinders: A comparison of two different damage indicators26citations
  • 2001Mechanical properties of a Cr-Ni-Mo-Al-Ti maraging steel in the process of martensitic transformation47citations
  • 2000New view on transformation induced plasticity (TRIP)481citations
  • 2000The role of backstress in phase transforming steelscitations
  • 2000Deformation behavior of elastic-plastic materials containing instantly transforming inclusionscitations

Places of action

Chart of shared publication
Svoboda, J.
1 / 48 shared
Böhm, H. J.
1 / 2 shared
Zickler, G. A.
1 / 11 shared
Wimler, David
1 / 6 shared
Razumovskiy, V. I.
1 / 3 shared
Appel, Fritz
2 / 2 shared
Mayer, Svea
3 / 56 shared
Clemens, Helmut
3 / 120 shared
Ecker, Werner
2 / 21 shared
Schnideritsch, Holger
1 / 2 shared
Klösch, Gerald
1 / 5 shared
Svoboda, Jiří
1 / 6 shared
Drexler, Andreas
1 / 12 shared
Mori, Gregor Karl
1 / 6 shared
Siegl, Wolfgang
1 / 3 shared
Tkadletz, Michael
1 / 14 shared
Kolednik, Otmar
4 / 11 shared
Predan, Jožef
1 / 10 shared
Fratzl, Prof. Dr. Dr. H. C. Peter
3 / 569 shared
Razi, Hajar
1 / 5 shared
Klein, Thomas
1 / 28 shared
Burtscher, Michael
1 / 14 shared
Sannikov, Aleksandr
1 / 3 shared
Ehlenbröker, Ulrich
1 / 2 shared
Cailletaud, Georges
5 / 77 shared
Antretter, Thomas
10 / 37 shared
Petersmann, Manuel
2 / 7 shared
Staron, Peter
1 / 44 shared
Oehring, Michael
1 / 10 shared
Paul, Jonathan D. H.
1 / 2 shared
Predan, Jozef
2 / 3 shared
Waitz, Thomas
2 / 9 shared
Aizenberg, Joanna
1 / 6 shared
Svoboda, Jiri
1 / 1 shared
Karnthaler, H. Peter
1 / 3 shared
Terasaki, T.
3 / 3 shared
Cailletaud, G.
2 / 4 shared
Tanaka, K.
5 / 15 shared
Goto, S.
2 / 11 shared
Nagayama, K.
3 / 3 shared
Azzouz, F.
1 / 1 shared
Tanaka, Kikuaki
1 / 1 shared
Richard, O.
1 / 17 shared
Atkins, Anthony G.
1 / 1 shared
Gänser, Hans Peter
1 / 2 shared
Azzouz, Farida
2 / 8 shared
Werner, E.
1 / 9 shared
Reisner, G.
1 / 2 shared
Pineau, André
1 / 62 shared
Chart of publication period
2022
2021
2020
2019
2018
2016
2011
2010
2005
2003
2002
2001
2000

Co-Authors (by relevance)

  • Svoboda, J.
  • Böhm, H. J.
  • Zickler, G. A.
  • Wimler, David
  • Razumovskiy, V. I.
  • Appel, Fritz
  • Mayer, Svea
  • Clemens, Helmut
  • Ecker, Werner
  • Schnideritsch, Holger
  • Klösch, Gerald
  • Svoboda, Jiří
  • Drexler, Andreas
  • Mori, Gregor Karl
  • Siegl, Wolfgang
  • Tkadletz, Michael
  • Kolednik, Otmar
  • Predan, Jožef
  • Fratzl, Prof. Dr. Dr. H. C. Peter
  • Razi, Hajar
  • Klein, Thomas
  • Burtscher, Michael
  • Sannikov, Aleksandr
  • Ehlenbröker, Ulrich
  • Cailletaud, Georges
  • Antretter, Thomas
  • Petersmann, Manuel
  • Staron, Peter
  • Oehring, Michael
  • Paul, Jonathan D. H.
  • Predan, Jozef
  • Waitz, Thomas
  • Aizenberg, Joanna
  • Svoboda, Jiri
  • Karnthaler, H. Peter
  • Terasaki, T.
  • Cailletaud, G.
  • Tanaka, K.
  • Goto, S.
  • Nagayama, K.
  • Azzouz, F.
  • Tanaka, Kikuaki
  • Richard, O.
  • Atkins, Anthony G.
  • Gänser, Hans Peter
  • Azzouz, Farida
  • Werner, E.
  • Reisner, G.
  • Pineau, André
OrganizationsLocationPeople

document

Martensitic phase transformations of bulk nanocrystalline NiTi alloys

  • Waitz, Thomas
  • Karnthaler, H. Peter
  • Fischer, Franz Dieter
  • Antretter, Thomas
Abstract

<p>Bulk nanocrystalline NiTi alloys were made by methods of severe plastic deformation. Solid state amorphization of NiTi by high pressure torsion was followed by polymorphous devitrification to obtain stress free nanograins of the B2 high temperature phase. Upon cooling, the transformation from B2 austenite to B19' martensite is suppressed by a transformation barrier that increases with decreasing size of the nanograins. Grains with a size of less than about 50 nm do not transform to martensite even at large undercooling. The analysis of the atomic structures by high-resolution transmission electron microscopy reveals the result that the martensitic transformation is taking place by nanoscale twinning. Low-energy twin boundaries facilitate arrays of compound twins on atomic level to overcome the strain energy barrier. Nanograins were modeled as spherical inclusions containing twinned martensite to calculate the transformation energy and to find a critical grain size below which the martensitic transformation becomes unlikely. An energy minimization criterion enables to predict the morphology of the transformed grain. In grains larger than about 100 nm self-accommodation occurs by a unique "herring-bone" microstructure yielding energy minimization and strain compatibility at invariant interfaces. Calculations using the geometrically nonlinear theory of the martensitic transformation agree with the observed geometry of the "herring-bone" microstructure.</p>

Topics
  • impedance spectroscopy
  • morphology
  • compound
  • polymer
  • grain
  • inclusion
  • grain size
  • phase
  • theory
  • laser emission spectroscopy
  • transmission electron microscopy
  • twinned