People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Strangwood, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Sports Materialscitations
- 2019Grain growth on reheating for an as-cast Al-Nb-containing steel with segregated compositioncitations
- 2019Effect of grain size distribution on recrystallisation kinetics in an Fe-30Ni model alloycitations
- 2018Characterisation of precipitation and coarsening of carbides during tempering in a low alloyed quenched and tempered steelcitations
- 2018Characterisation of precipitation and carbide coarsening in low carbon low alloy Q&T steels during the early stages of temperingcitations
- 2017Skeletonisation to Find the Centre of Dendrites Traced from a 2D Microstructural Image
- 2016Effect of grain size distribution on recrystallisation kinetics in a Fe-30Ni model alloy
- 2015Electromagnetic evaluation of the microstructure of grade 91 tubes/pipescitations
- 2014Stereologische Analyse der mikrostrukturellen Inhomogenitäten in durch Kokillenguss mit Direktkühlung und durch konventionellen Strangguss verarbeiteten Aluminium-Magnesium-Legierung (AA5754)
- 2013The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2013Magnetic evaluation of microstructure changes in 9Cr-1Mo and 2.25Cr-1Mo steels using electromagnetic sensorscitations
- 2012The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2012On the mechanism of porosity formation during welding of titanium alloyscitations
- 2012Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloyscitations
- 2012Coupled thermodynamic/kinetic model for hydrogen transport during electron beam welding of titanium alloycitations
- 2009Microstructure-property development in friction stir welds of Al-Mg alloys
- 2007Microstructure-microhardness relationships in friction stir welded AA5251citations
- 2007Influence of base metal microstructure on microstructural development in aluminium based alloy friction stir weldscitations
- 2005Microstructural development during friction stir welding of work hardenable Al-Mg alloys
Places of action
Organizations | Location | People |
---|
document
Skeletonisation to Find the Centre of Dendrites Traced from a 2D Microstructural Image
Abstract
As three-dimensional analysis of dendritic microstructures (such as Ni-superalloys) has become more prevalent with theuseoftechniques such as Robomet,synchrotronandcomputerisedtomography, there has been a greater need for accurate and efficient methods to characterise dendrites in three dimensions. One parameter which is needed for a variety of further calculations is the primary dendrite arm spacing (λ_1). This parameter can be calculated by finding the distances between all of the centres of the dendrites on a single plane. However before this can be computed the locations of all these centres must be obtained. One technique which has often been used in the literature is the centre of geometry method, which simply determines the centre of gravity of each dendrite as seen in a micrograph. However, this method has some major drawbacks. For instance it can assign the centre outside of a dendrite, which often applies to irregular shaped dendrites.As a result another technique shall be presented using skeletonisation. It is shown here that this technique represents good improvement over the centre of geometry method; however it also has drawbacks in certain specific conditions. Combined use of all these methods however shows promise in the search for a reliable method to identify the centres of differently shaped dendrites.