Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Koivisto, Juha

  • Google
  • 14
  • 45
  • 139

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Viscoelastic phenomena in methylcellulose aqueous systems : Application of fractional calculus17citations
  • 2024Viscoelastic phenomena in methylcellulose aqueous systems:Application of fractional calculus17citations
  • 2024Accelerated design of solid bio-based foams for plastics substitutes3citations
  • 2023Striation lines in intermittent fatigue crack growth in an Al alloy2citations
  • 2022Hierarchical Slice Patterns Inhibit Crack Propagation in Brittle Sheets6citations
  • 2021Fatigue crack growth in an aluminum alloy: Avalanches and coarse graining to growth laws5citations
  • 2021Scalable method for bio-based solid foams that mimic wood23citations
  • 2021General mean-field theory to predict stress-compression behaviour of lightweight fibrous materialscitations
  • 2020Vibration controlled foam yieldingcitations
  • 2020Crossover from mean-field compression to collective phenomena in low-density foam-formed fiber material11citations
  • 2019Probing the local response of a two-dimensional liquid foam5citations
  • 2017Influence of strain rate, temperature and fatigue on the radial compression behaviour of Norway spruce6citations
  • 2017Influence of strain rate, temperature and fatigue on the radial compression behaviour of Norway spruce6citations
  • 2016Predicting sample lifetimes in creep fracture of heterogeneous materials38citations

Places of action

Chart of shared publication
Miranda-Valdez, Isaac Yair
1 / 2 shared
Fliri, Lukas
2 / 4 shared
Hummel, Michael
2 / 28 shared
Rentería-Baltiérrez, Flor Y.
2 / 2 shared
Puente-Córdova, Jesús G.
2 / 3 shared
Alava, Mikko J.
8 / 19 shared
Puisto, Antti
5 / 7 shared
Miranda-Valdez, Isaac Y.
2 / 3 shared
Mäkinen, Tero
7 / 11 shared
Päivänsalo, Axel
1 / 1 shared
Coffeng, Sebastian
3 / 3 shared
Viitanen, Leevi
4 / 4 shared
Jannuzzi, Luisa
2 / 2 shared
Lomakin, Ivan V.
2 / 2 shared
Kinnunen, Anniina
1 / 1 shared
Widell, Kim
2 / 4 shared
Himmler, Marcus
1 / 1 shared
Hosseini, Seyyed Ahmad
1 / 5 shared
Pournajar, Mahshid
1 / 3 shared
Moretti, Paolo
1 / 42 shared
Redel, Michael
1 / 2 shared
Schubert, Dirk W.
1 / 20 shared
Zaiser, Michael
1 / 16 shared
Savolainen, Juha
1 / 1 shared
Reichler, Mikael
1 / 1 shared
Mac Intyre, Jonatan R.
1 / 1 shared
Rabensteiner, Samuel
1 / 1 shared
Törnblom, Ludwig
1 / 1 shared
Alava, Mikko
6 / 10 shared
Ketoja, Jukka A.
2 / 17 shared
Paunonen, Sara
1 / 5 shared
Pääkkönen, Elina
2 / 10 shared
Pöhler, Tiina
1 / 6 shared
Mac Intyre, Jonatan
1 / 1 shared
Rinkinen, Oona
1 / 1 shared
Santucci, Stephane
1 / 2 shared
Saarenrinne, Pentti
2 / 8 shared
Engberg, Birgitta A.
2 / 2 shared
Ovaska, Markus
3 / 4 shared
Björkqvist, Tomas
1 / 2 shared
Miksic, Amandine
3 / 4 shared
Salminen, Lauri I.
2 / 4 shared
Moilanen, Carolina
2 / 4 shared
Björkqvist, Karl Tomas
1 / 3 shared
Laurson, Lasse
1 / 19 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017
2016

Co-Authors (by relevance)

  • Miranda-Valdez, Isaac Yair
  • Fliri, Lukas
  • Hummel, Michael
  • Rentería-Baltiérrez, Flor Y.
  • Puente-Córdova, Jesús G.
  • Alava, Mikko J.
  • Puisto, Antti
  • Miranda-Valdez, Isaac Y.
  • Mäkinen, Tero
  • Päivänsalo, Axel
  • Coffeng, Sebastian
  • Viitanen, Leevi
  • Jannuzzi, Luisa
  • Lomakin, Ivan V.
  • Kinnunen, Anniina
  • Widell, Kim
  • Himmler, Marcus
  • Hosseini, Seyyed Ahmad
  • Pournajar, Mahshid
  • Moretti, Paolo
  • Redel, Michael
  • Schubert, Dirk W.
  • Zaiser, Michael
  • Savolainen, Juha
  • Reichler, Mikael
  • Mac Intyre, Jonatan R.
  • Rabensteiner, Samuel
  • Törnblom, Ludwig
  • Alava, Mikko
  • Ketoja, Jukka A.
  • Paunonen, Sara
  • Pääkkönen, Elina
  • Pöhler, Tiina
  • Mac Intyre, Jonatan
  • Rinkinen, Oona
  • Santucci, Stephane
  • Saarenrinne, Pentti
  • Engberg, Birgitta A.
  • Ovaska, Markus
  • Björkqvist, Tomas
  • Miksic, Amandine
  • Salminen, Lauri I.
  • Moilanen, Carolina
  • Björkqvist, Karl Tomas
  • Laurson, Lasse
OrganizationsLocationPeople

document

General mean-field theory to predict stress-compression behaviour of lightweight fibrous materials

  • Koivisto, Juha
  • Ketoja, Jukka A.
  • Paunonen, Sara
  • Mäkinen, Tero
  • Alava, Mikko
  • Pääkkönen, Elina
  • Pöhler, Tiina
Abstract

We have postulated a new theory to describe the stress-strain behaviour of low-density random fibre networks under compression [1]. Predictions of the theory were verified with experiments on more than a hundred different bio-based fibre materials with varied density and raw materials. In parallel to mechanical testing, high-speed imaging and acoustic emission measurements revealed key mechanisms and domains in which the theory was applicable.<br/>Material compression causes axial stress in fibres in addition to their bending. By assuming that fibre segments longer than a0s(e) (a0 is the mean segment length) undergo a buckling failure at strain e, the compressive stress σ becomes [1]<br/>σ(e)=σ1/[s(e)]2, with s satisfying [s(e)+1]exp[−s(e)]=e.<br/>The theory was applied to fibre materials produced with laboratory foam forming process, which uses aqueous foam as transfer medium to deposit fibres into a connected structure. The achieved low density (20−100 kg/m3) of the dried material allowed for individual fibres to bend without contacting the neighbouring fibres. The used raw materials in our experiments were chemical, mechanical and regenerated cellulose fibres of varied dimensions.<br/>The above simple mean-field theory described the experimental stress-strain behaviour surprisingly well at moderate, from 10% to 50%, compression levels. Moreover, high-speed imaging during compression showed abrupt local dislocations, interpreted as buckling failures of heterogeneous fibres under axial stress. In cyclic measurements, we observed significant acoustic emission only when the compressive strain exceeded the previous strains. This suggested a failure source other than fibre bending. Beyond c.a. 50% compression, the number of acoustic events grew rapidly suggesting a crossover to collective phenomena. At the same time, the compression-stress behaviour began to deviate from the mean-field prediction.<br/>REFERENCES<br/>[1] J. A. Ketoja, S. Paunonen, P. Jetsu, E. Pääkkönen, Compression strength mechanisms of low-density fibrous materials. Materials, Vol. 12, 384, 2019.

Topics
  • density
  • impedance spectroscopy
  • theory
  • experiment
  • strength
  • stress-strain behavior
  • dislocation
  • forming
  • acoustic emission
  • random
  • cellulose