People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colas, Florent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Improvement of the sensitivity of chalcogenide-based infrared sensors dedicated to the in situ detection of organic molecules in aquatic environment
- 2021Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Studycitations
- 2018Infrared-Sensor Based on Selenide Waveguide Devoted to Water Pollution
- 2018Development of Infrared-Sensor for Detecting Water Pollution Based on Selenide Waveguide
- 2017Infrared sensor for water pollution and monitoringcitations
- 2017Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infraredcitations
- 2015Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substratescitations
- 2015Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substratescitations
- 2015Comparison of adhesion layers of gold on silicate glasses for SERS detectioncitations
- 2015Comparison of adhesion layers of gold on silicate glasses for SERS detectioncitations
- 2014Maximizing the SERS signal by adjusting the arrangement of nanocylinders
- 2013RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy
- 2013Chalcogenide Glasses Developed for Optical Micro-sensor Devices
- 2012Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glasscitations
- 2012Optical sensor based on chalcogenide glasses for IR detection of bio-chemical entities
- 2009Chalcogenide Glass Optical Waveguides for Infrared Biosensingcitations
- 2009Chalcogenide Glass Optical Waveguides for Infrared Biosensingcitations
- 2008Surface plasmon resonance in chalcogenide glass-based optical systemcitations
- 2008Surface plasmon resonance in chalcogenide glass-based optical systemcitations
- 2007Chalcogenide waveguide for IR optical rangecitations
- 2007Chalcogenide waveguide for IR optical rangecitations
Places of action
Organizations | Location | People |
---|
conferencepaper
RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy
Abstract
International audience ; In this work, the fabrication of amorphous chalcogenide thin films (As2S3 and Ge25Sb10Se65) by radio-frequency sputtering was studied. The morphology, chemical composition, optical properties and structure of fabricated layers as well as bonding arrangement at the surface of the films were investigated by scanning electron microscope with an energy-dispersive X ray analyzer, atomic force microscopy, transmittance measurements, variable angle spectroscopic ellipsometry, prism coupling technique, X-ray reflectometry, profilometry, conductivity measurements, Raman scattering spectroscopy and X-ray photoelectron spectroscopy. As2S3 thin films show some crystals formation on the surface indicating the ageing (oxidation) of the films. Ge25Sb10Se65 layers are more stable against oxidation and the morphology of the layers seems to be influenced by the sputtering pressure. Moreover, gold nanoparticles were deposited onto Ge25Sb10Se65 thin films by direct-current sputtering to assess surface enhanced infrared absorption spectroscopy of prepared structures. The morphology and thickness of gold films were also investigated. The infrared transmission spectra of a self-assembled monolayer of 4-nitrothiophenol deposited on gold are enhanced according to surface selection rules