People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moradi, Morteza
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Innovative welding integration of acousto-ultrasonic composite transducers onto thermoplastic composite structurescitations
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Acousto-ultrasonic composite transducers integration into thermoplastic composite structures via ultrasonic welding
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023Developing health indicators for composite structures based on a two-stage semi-supervised machine learning model using acoustic emission datacitations
- 2023Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
- 2021Effect of honeycomb core on free vibration analysis of fiber metal laminate (FML) beams compared to conventional compositescitations
- 2020Investigation of nonlinear post-buckling delamination in curved laminated composite panels via cohesive zone modelcitations
- 2019Edge disbond detection of carbon/epoxy repair patch on aluminum using thermographycitations
- 2019Numerical and experimental study for assessing stress in carbon epoxy composites using thermographycitations
- 2019Post buckling behavior analysis of unidirectional saddle shaped composite panels containing delaminations using cohesive zone modeling
Places of action
Organizations | Location | People |
---|
conferencepaper
Acousto-ultrasonic composite transducers integration into thermoplastic composite structures via ultrasonic welding
Abstract
Acousto-ultrasonic composite transducers (AUCT), which are made of piezoceramic materials embedded in a reinforced polymeric matrix, are promising for the health monitoring of composite structures. However, when they are integrated into highly loaded thermoplastic composite structures, ensuring proper joining properties is a challenge. The conventional approach of attaching the AUCT using adhesive may not be sufficiently reliable in aeronautic applications for low surface energy materials such as polyaryletherketone composites, where surface treatments are needed for adhesion. Welding techniques can be used to create a joint in which the interface material interfuses with the AUCT embedment and the structure matrix, resulting in a homogeneous interface with properties comparable to the host structure matrix throughout its service life. With this in mind, the main objective of the present work is to investigate the viability of attaching AUCT to low-melting polyaryletherketone carbon fiber reinforced thermoplastic composite structures using the ultrasonic welding (UW) procedure and characterize the joint performance. The ultrasonic welded joint using an external energy director in the interface is investigated by comparing the findings to those of a reference AUCT system integrated into the structure with autoclave co-consolidation. Infrared thermography is employed to monitor the process, and a parameter study of the UW process is carried out. The AUCT survivability during the UW process is determined by measuring the capacitance, and C-scan is used to assess joint quality. The results show the challenges of attaching AUCT to thermoplastic composite structures using UW and surviving the procedure. ; Structural Integrity & Composites ; Aerospace Structures & Materials