People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amico, Sandro Campos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024On the experimental determination and prediction of damage evolution in composites via cyclic testingcitations
- 2024Experimental investigation on low-velocity impact behavior of glass, Kevlar, and hybrid composites with an elastomeric polyurethane matrix
- 2023Wood-Poly(furfuryl Alcohol) Prepreg: A Novel, Ecofriendly Laminate Composite
- 2023Thermomechanical properties of imidazolium ionic liquid-modified mwcnt/carbon fiber/epoxy hybrid composite laminatescitations
- 2021Manufacturing of filament wound cylinders locally reinforced by tailored patches
- 2014Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber compositescitations
- 2013Hybridization effect on the mechanical properties of curaua/glass fiber compositescitations
- 2013Short beam strength of curaua, sisal, glass and hybrid compositescitations
- 2012Study of hybrid intralaminate curaua/glass compositescitations
- 2012Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fiberscitations
Places of action
Organizations | Location | People |
---|
document
Experimental investigation on low-velocity impact behavior of glass, Kevlar, and hybrid composites with an elastomeric polyurethane matrix
Abstract
Low-velocity impacts represent a critical dynamic condition for engineering structures. Combining two reinforcing fibers in a single matrix, i.e., hybridization, is considered a feasible way to improve composite performance. In this context, this paper presents an experimental work on composites with Kevlar and glass fabrics and a novel thermoset polyurethane matrix. The coupons are manufactured by vacuum infusion technique and low-velocity impact tests are carried out. First, the impact behavior of Kevlar and glass laminates of different thicknesses is assessed, and then impact tests are performed on different configurations of hybrid laminates, both symmetric and non-symmetric. For the non-symmetric specimens, impact tests were conducted on both sides of the stack. Load vs displacement curves are reported along with absorbed energy. To investigate the damage mechanism, the front, back, and cross-section views of the specimens are analyzed, and features related to the stacking sequences are discussed. Thermographic analyses are carried out on the impacted specimens to further analyze damage. The failure mechanisms are different from traditional epoxy composites and a hybridization effect is reported. The results evidence that the hybrid coupons are viable for structural applications, being capable of absorbing high-impact energies, in particular, non-symmetric hybrid laminates outperformed the Kevlar, glass, and symmetric ones, absorbing roughly 15% less energy for the highest energy impact.