People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Madyira, D. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024High-pressure torsion effect on microstructural and hardness properties of Magnesium with Silicon Carbide nanoparticles
- 2023Study of Mechanical Properties of Polyethylene/CNT Nanocomposites: Experimental, FEM and MD
- 2023Experimental investigation of the elastic properties of PE/CNT nanocomposite
- 2023Experimental And Theoretical Study on The Impact Strength and Hardness Properties Of HDPE/SWCNTs Nanocomposites
Places of action
Organizations | Location | People |
---|
article
High-pressure torsion effect on microstructural and hardness properties of Magnesium with Silicon Carbide nanoparticles
Abstract
<jats:p>Without a doubt, lightweight materials of high strength are in high demand in the automotive, aerospace, biomedical, and other industries that require such materials. Processing or manufacturing such materials has been a vital topic in contemporary research, as well as material development in the industry. A possible solution for the processing of lightweight materials of high strength is to target lightweight materials by nature such as magnesium and improve their mechanical properties such as stiffness, strength, and hardness. The aforementioned properties are sometimes achieved by processing soft and light materials through High-Pressure Torsion. In this work, Magnesium with Silicon Carbide nanoparticles (Mg-SiC) was strengthened and hardened through the High-Pressure Torsion (HPT) processing technique. The samples were compressed with a pressure of 6.0 GPa and twisted at the rotating speed of 1 rpm with varying numbers of turns N = 0, N = 1, N = 5 and N = 10 at a temperature of 23°C. The processed samples were prepared for the experimental investigation of microstructural characterization and hardness test examinations. Microstructural results showed that grain refinements of material can be achieved through HPT processing methods, which reduced the average grain sizes of unprocessed (N = 0) Mg alloy samples from 149.9 µm to 27.1 µm after processing ten turns. However, hardness test results do not indicate any significant improvement after one HPT processing turn although homogeneity is attained at five processing turns within the nanocomposites.</jats:p>