People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saidani, Messaoud
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Mitigating high-temperature vulnerabilities in concrete: utilizing waste plastic fibers for enhanced mechanical resilience and environmental sustainabilitycitations
- 2024Influence of Calcining Temperature on the Mineralogical and Mechanical Performance of Calcined Impure Kaolinitic Clays in Portland Cement Mortarscitations
- 2023Expanded polystyrene (EPS) in concrete
- 2022Potential of calcined brick clay as a partial substitution in blended cement mortarscitations
- 2022Characteristics of a novel lightweight concretecitations
- 2022Mechanochemical Characterisation of Calcined Impure Kaolinitic Clay as a Composite Binder in Cementitious Mortarscitations
- 2022Performance of low-grade kaolinitic clay as a cement substitute in mortar: A comparative study with fly ash
- 2022Use of low grade kaolinitic clays in development of a pozzolan-cement binder system
- 2021Investigate the Effect of Ground Granulated Blast Slag on Self Compacting Concrete
- 2020Shear characterisation of pultruded superstructural FRP-concrete push-outscitations
- 2020A Modified Method for Los Angeles Abrasion Testcitations
- 2019A modified method for Los Angeles Abrasion testcitations
- 2018Finite Element Analysis of the Flexural behaviour of Steel-Reinforced GEM-TECH Cementitious Materialcitations
- 2018Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical Studycitations
- 2017Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibrescitations
- 2016Behaviour of different types of fibre reinforced concrete without admixturecitations
Places of action
Organizations | Location | People |
---|
article
Finite Element Analysis of the Flexural behaviour of Steel-Reinforced GEM-TECH Cementitious Material
Abstract
This paper presents a numerical investigation on the flexural performance of a novel cementitious reinforced GEM-TECH material using finite element method. A discrete nonlinear FE model using the commercial software ANSYS was employed to model a steel-reinforced GEM-TECH beam. Element SOLID65 was used to model the cementitious material while LINK180 element was used to model the reinforcing bars and stirrups. For model validation, FEA results and crack plots were compared to those obtained from the experimental results of five reinforced GEM-TECH beams: three beams designed with target density of 1810 kg/m3 and two beams with target density of 1600 kg/m3. Both load-deflection plots and the failure mode crack plots predicted by the FE model were in good agreement with the experimental results.