People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liberal Fernandes, Hugo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2018Performance assessment of flat slabs strengthened with a bonded reinforced-concrete overlaycitations
- 2013Multiscale copper-μdiamond nanostructured composites
- 2011Tungsten-microdiamond composites for plasma facing componentscitations
- 2011Production of Cu/diamond composites for first-wall heat sinkscitations
- 2010Consolidation of Cu-nDiamond nanocompositescitations
- 2009W-diamond/Cu-diamond nanostructured composites for fusion devices
- 2008Novel approach to plasma facing materials in nuclear fusion reactorscitations
- 2007Plasma-erosion of Cu-nanoDiamond and W-nanoDiamond composites
Places of action
Organizations | Location | People |
---|
document
Consolidation of Cu-nDiamond nanocomposites
Abstract
<p>Due to their interesting properties copper-based materials have been considered appropriate heat-sinks for first wall panels in nuclear fusion devices. The concept of property tailoring involved in the design of metal matrix composites has led to several attempts to use nanodiamond (nDiamond) as reinforcement. In particular, nDiamond produced by detonation has been used to reinforce copper. In the present study, powder mixtures of copper and nDiamond with 20 at. % C were mechanically alloyed (MA) and consolidated via hot extrusion or spark plasma sintering (SPS). The hardness evolutions as well as the structural characterization of as-milled nanocomposite powders and consolidated samples are reported. Density measurements indicate that the consolidation outcome varies significantly with the process used. Transmission electron microscopy (TEM) inspection of the extrusion consolidated sample revealed bonding at the interface between copper and nDiamond particles. The nDiamond size distribution was determined from TEM observations. The results obtained are discussed in terms of consolidation routes.</p>