Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Järvenpää, Antti

  • Google
  • 13
  • 17
  • 140

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Synergistic effects of heat treatments and severe shot peening on residual stresses and microstructure in 316L stainless steel produced by laser powder bed fusion21citations
  • 2024Comparative fatigue performance of as-built vs etched Ti64 in TPMS-gyroid and stochastic structures fabricated via PBF-LB for biomedical applications5citations
  • 2023Microstructure and Fatigue Life of Surface Modified PBF-LB Manufactured Maraging Steelcitations
  • 2023Effect of Severe Shot Peening on Mechanical Properties and Fatigue Resistance of Wire Arc Additive Manufactured AISI 316L4citations
  • 2023The Effect of Laser Heat Treatment and Severe Shot Peening on Laser Powder Bed Fusion Manufactured AISI 316L Stainless Steelcitations
  • 2023Effect of High-Temperature Tempering on Microstructure and Mechanical Strength of Laser-Welded Joints between Medium-Mn Stainless Steel and High-Strength Carbon Steelcitations
  • 2023Fatigue Life and Impact Toughness of PBF-LB Manufactured Ti6Al4V and the Effect of Heat Treatmentcitations
  • 2023Surface Roughness Improvement of PBF-LB Manufactured 316L with Dry Electropolishing1citations
  • 2023High Temperature Heat Treatment and Severe Shot Peening of PBF-LB Manufactured 316L Stainless Steel1citations
  • 2023Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steel29citations
  • 2022Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stresses50citations
  • 2022The effect of severe shot peening on fatigue life of laser powder bed fusion manufactured 316L stainless steel29citations
  • 2022Surface and subsurface modification of selective laser melting built 316L stainless steel by means of severe shot peeningcitations

Places of action

Chart of shared publication
Gundgire, Tejas
6 / 12 shared
Vippola, Minnamari
4 / 58 shared
Santa-Aho, Suvi Tuulikki
3 / 22 shared
Rautio, Timo
11 / 14 shared
Araya-Calvo, Miguel
1 / 1 shared
Guillen-Girón, Teodolito
1 / 2 shared
Morales-Sanchez, Johan Enrique
1 / 1 shared
Hietala, Mikko
4 / 4 shared
Jaskari, Matias
9 / 13 shared
Ali, Mohammed
1 / 4 shared
Ghosh, Sumit
1 / 18 shared
Hamada, Atef S.
1 / 2 shared
Bhatti, Haider Ali
1 / 1 shared
Araya, Miguel
1 / 1 shared
Hamada, Atef
1 / 7 shared
Jokiaho, Tuomas
2 / 13 shared
Iso-Junno, Terho
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Gundgire, Tejas
  • Vippola, Minnamari
  • Santa-Aho, Suvi Tuulikki
  • Rautio, Timo
  • Araya-Calvo, Miguel
  • Guillen-Girón, Teodolito
  • Morales-Sanchez, Johan Enrique
  • Hietala, Mikko
  • Jaskari, Matias
  • Ali, Mohammed
  • Ghosh, Sumit
  • Hamada, Atef S.
  • Bhatti, Haider Ali
  • Araya, Miguel
  • Hamada, Atef
  • Jokiaho, Tuomas
  • Iso-Junno, Terho
OrganizationsLocationPeople

article

Effect of High-Temperature Tempering on Microstructure and Mechanical Strength of Laser-Welded Joints between Medium-Mn Stainless Steel and High-Strength Carbon Steel

  • Järvenpää, Antti
  • Ali, Mohammed
  • Ghosh, Sumit
  • Hamada, Atef S.
  • Jaskari, Matias
Abstract

<jats:p>The strengthening effect due to high-temperature tempering (HTT) at 700 °C on the microstructure and mechanical properties of welded joints between medium-Mn stainless steel (MMnSS) and high-strength carbon steel (CS) was studied. The microstructure of the weldments was investigated using Laser and scanning electron microscopes. An Electron probe microanalyzer (EPMA) was used to assess quantitatively the elemental distribution profiles of alloying elements within the weld zone. The strengthening precipitates induced during welding and HTT were characterized by transmission electron microscopy (TEM). Uniaxial tensile tests and microindentation hardness (H<jats:sub>IT</jats:sub>) measurements of the weld joints were conducted to evaluate the strengthening effect. Fully fresh-martensite and fine-tempered martensitic structures were promoted in the as-weld and HTT processes, respectively. The HTT structure exhibited a remarkable improvement in mechanical properties (a better combination of yield and tensile strength together with moderate ductility) compared to its weld counterpart. TEM investigation revealed that various types of precipitates have been promoted in the structures of the weld and HTT, e.g., nanosized vanadium and chromium carbides. It is apparent that the proposed HTT of the joints is an effective treatment for improving the mechanical properties due to inducing the formation of fine interphase precipitates, resulting in enhanced mechanical strength of the joints.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • stainless steel
  • chromium
  • strength
  • carbide
  • hardness
  • transmission electron microscopy
  • precipitate
  • tensile strength
  • ductility
  • vanadium
  • electron probe micro analysis
  • tempering