People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michalski, Andrzej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sinteringcitations
- 2018Structure and mechanical properties of TiB 2 /TiC – Ni composites fabricated by pulse plasma sintering methodcitations
- 2017Design of interfacial Cr 3 C 2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applicationscitations
- 2011W/steel joint fabrication using the pulse plasma sintering (PPS) methodcitations
- 2010Nanocrystalline WC with non-toxic Fe-Mn bindercitations
- 2010Properties of WCCo/diamond composites produced PPS method intended for drill bits for machining of building stonescitations
- 2008Heat Sink Materials Processing by Pulse Plasma Sinteringcitations
- 2007Nanocrystalline cemented carbides sintered by the pulse plasma methodcitations
- 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Methodcitations
- 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Techniquecitations
- 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reactioncitations
- 2004Phase transformations in ball milled AISI 316L stainless steel powder and the microstructure of the steel obtained by its sintering
- 2002Fabrication, structure and consolidation of NiAl-Al <inf>2</inf> O <inf>3</inf> mechanically alloyed nanocomposite powders
Places of action
Organizations | Location | People |
---|
article
Heat Sink Materials Processing by Pulse Plasma Sintering
Abstract
A Pulse Plasma Sintering (PPS) process was employed to manufacture Cu-diamond composites with a 50% volume fraction of each constituent. Pure and Cr (0.8wt.%) alloyed copper matrices were used and commercial diamond powders. The composites were sintered at temperature of 900°C for 20 min and under pressure of 60 MPa. In these sintering conditions diamond becomes thermodynamically unstable. Cu0.8Cr-diamond and Cu-diamond composites with relative densities of 99,7% and 96% respectively were obtained. The thermal conductivity of Cu0.8Cr-diamond composite is equal to 640 W(mK)-1 whereas that of Cu-diamond is 200 W(mK)-1. The high thermal conductivity and relative density of Cu0.8Cr-diamond composite is due to the formation of a thin chromium carbide layer at the Cu-diamond interface.