People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karakoç, Alp
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Design, Fabrication, and Characterization of 3D-Printed Multiphase Scaffolds Based on Triply Periodic Minimal Surfacescitations
- 2023Effects of leaflet curvature and thickness on the crimping stresses in transcatheter heart valvecitations
- 2023Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communicationscitations
- 2022Predicting the upper-bound of interlaminar impact damage in structural composites through a combined nanoindentation and computational mechanics techniquecitations
- 2022Simplified indentation mechanics to connect nanoindentation and low-energy impact of structural composites and polymers
- 2021Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber compositescitations
- 2021Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturingcitations
- 2021Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyratecitations
- 2020Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matchingcitations
- 2020Mechanical and thermal behavior of natural fiber-polymer composites without compatibilizerscitations
- 2020A predictive failure framework for brittle porous materials via machine learning and geometric matching methodscitations
- 2020Comparative screening of the structural and thermomechanical properties of FDM filaments comprising thermoplastics loaded with cellulose, carbon and glass fiberscitations
- 2020Comparative screening of the structural and thermomechanical properties of FDM filaments comprising thermoplastics loaded with cellulose, carbon and glass fiberscitations
- 2019Machine Learning assisted design of tailor-made nanocellulose filmscitations
- 2018Stochastic fracture of additively manufactured porous compositescitations
- 2016Shape and cell wall slenderness effects on the stiffness of wood cell aggregates in the transverse planecitations
- 2016Modeling of wood-like cellular materials with a geometrical data extraction algorithmcitations
- 2013Effective stiffness and strength properties of cellular materials in the transverse planecitations
Places of action
Organizations | Location | People |
---|
article
Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing
Abstract
Funding Information: The authors would like to acknowledge the material support by Elastopoli Oy, Finland. Both M.R. and R.A. had equal contributions; therefore, their co-authorship order should be equally assessed. A.K. gratefully acknowledges the funding through the Academy of Finland BESIMAL (Decision No. 334197). Publisher Copyright: © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) ; In recent years, with the recent advancements in the field of additive manufacturing, the use of biobased thermoplastic polymers and their natural fiber-reinforced biocomposite filaments have been rapidly emerging. Compared to their oil-based counterparts, they provide several advantages with their low carbon footprints, ease of reusability and recyclability and abundancy, and comparable price ranges. In consideration of their increasing usage, the present study focused on the development and analysis of biocomposite material blends and filaments by merging state-of-the-art manufacturing and material technologies. A thorough suitability study for fused deposition modeling (FDM), which is used to manufacture samples by depositing the melt layer-by-layer, was carried out. The mechanical, thermal, and microstructural characterization of birch fiber reinforced PLA composite granules, in-house extruded filaments, and printed specimens were investigated. The results demonstrated the printability of biocomposite filaments. However, it was also concluded that the parameters still need to be optimized for generic and flawless filament extrusion and printing processes. Thus, minimal labor and end-products with better strength and resolutions can be achieved. ; Peer reviewed