People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vijayaraghavan, Aravind S.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Investigating the Effects of Graphene Nanoplatelets (GNPs) and external Waterbased Crosslinker (eWCL) on the Mechanical and Thermal properties of Waterbased Elastomer (WBE) Nanocomposites
- 2023Graphene Nanoplatelets (GNPs) Enhanced Water-based Elastomer Nanocomposites -tailored production from Nanoscale to Macrostructures
- 2021Hybrid molecular/mineral lyotropic liquid crystal system of CTAB and graphene oxide in watercitations
- 2021Graphene and Water-Based Elastomer Nanocomposites – A Reviewcitations
- 2021High-grip and hard-wearing graphene reinforced polyurethane coatings
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Graphene oxide films for field effect surface passivation of silicon for solar cellscitations
- 2018Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formationcitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Graphene and water-based elastomers thin-film composites by dip-mouldingcitations
- 2013Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.citations
- 2006Ionic liquid-derived blood-compatible composite membranes for kidney dialysiscitations
- 2005Synthesis and characterization of thickness-aligned carbon nanotube - polymer composite filmscitations
- 2005Embedded carbon-nanotube-stiffened polymer surfacescitations
Places of action
Organizations | Location | People |
---|
article
Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation
Abstract
Nanostructured systems, such as nanocomposites, are potential materials for usage in different fields since synergistic effects of their components at the nanoscale domain may improve physical/chemical properties when compared to individual phases. We report here the preparation and characterisation of a new nanocomposite composed of polyaniline (PANI), reduced graphene oxide (rGO) and hexaniobate (hexNb) nanoscrolls. Atomic force microscopy images show an interesting architecture of rGO flakes coated with PANI and decorated by hexNb. Such features are attributed to the high stability of the rGO flakes prepared at room temperature. Detailed characterisation by X-ray photoelectron and Raman spectroscopies indicates an intermediate reduction degree for the rGO component and high doping degree of the PANI chains compared to the neat polymer. The latter feature can be attributed to cooperative effects of PANI chains with rGO flakes and hexNb nanoscrolls, which promote conformational changes of the polymer backbone (secondary doping). Spectroscopic and electrochemistry data indicate a synergetic effect on the ternary nanocomposite, which is attributed to interactions between the components resulting from the morphological aspects. Therefore, the new nanocomposite presents promising properties for development of new materials in the film form on substrates for sensing or corrosion protection for example.