Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumarage, W. G. C.

  • Google
  • 2
  • 7
  • 107

University of Brescia

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications107citations
  • 2022Synthesis and characterization of mixed oxide nanowires for gas sensingcitations

Places of action

Chart of shared publication
Comini, Elisabetta
1 / 21 shared
Moumen, Abderrahim
1 / 1 shared
Comini, E.
1 / 26 shared
Jayawardena, P. S.
1 / 1 shared
Shimomura, M.
1 / 1 shared
Zappa, D.
1 / 10 shared
Poli, N.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Comini, Elisabetta
  • Moumen, Abderrahim
  • Comini, E.
  • Jayawardena, P. S.
  • Shimomura, M.
  • Zappa, D.
  • Poli, N.
OrganizationsLocationPeople

article

P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications

  • Comini, Elisabetta
  • Moumen, Abderrahim
  • Kumarage, W. G. C.
Abstract

<jats:p>This review focuses on the synthesis of p-type metal-oxide (p-type MOX) semiconductor thin films, such as CuO, NiO, Co3O4, and Cr2O3, used for chemical-sensing applications. P-type MOX thin films exhibit several advantages over n-type MOX, including a higher catalytic effect, low humidity dependence, and improved recovery speed. However, the sensing performance of CuO, NiO, Co3O4, and Cr2O3 thin films is strongly related to the intrinsic physicochemical properties of the material and the thickness of these MOX thin films. The latter is heavily dependent on synthesis techniques. Many techniques used for growing p-MOX thin films are reviewed herein. Physical vapor-deposition techniques (PVD), such as magnetron sputtering, thermal evaporation, thermal oxidation, and molecular-beam epitaxial (MBE) growth were investigated, along with chemical vapor deposition (CVD). Liquid-phase routes, including sol–gel-assisted dip-and-spin coating, spray pyrolysis, and electrodeposition, are also discussed. A review of each technique, as well as factors that affect the physicochemical properties of p-type MOX thin films, such as morphology, crystallinity, defects, and grain size, is presented. The sensing mechanism describing the surface reaction of gases with MOX is also discussed. The sensing characteristics of CuO, NiO, Co3O4, and Cr2O3 thin films, including their response, sensor kinetics, stability, selectivity, and repeatability are reviewed. Different chemical compounds, including reducing gases (such as volatile organic compounds (VOCs), H2, and NH3) and oxidizing gases, such as CO2, NO2, and O3, were analyzed. Bulk doping, surface decoration, and heterostructures are some of the strategies for improving the sensing capabilities of the suggested pristine p-type MOX thin films. Future trends to overcome the challenges of p-type MOX thin-film chemical sensors are also presented.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • grain
  • grain size
  • phase
  • thin film
  • semiconductor
  • physical vapor deposition
  • organic compound
  • defect
  • electrodeposition
  • crystallinity
  • evaporation
  • chemical vapor deposition
  • spin coating
  • spray pyrolysis