People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Park, Hyung-Ho
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Facile Synthesis of Surface-Modified Hollow-Silica (SiO2) Aerogel Particles via Oil–Water–Oil Double Emulsion Methodcitations
- 2024Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Reviewcitations
- 2023In Situ Sol-Gel Assembly of Graphitic Carbonitride Nanosheet-Supported Colloidal Binary Metal Sulfide into Nanosandwich-Like Multifunctional 3D Macroporous Aerogel Catalysts for Asymmetric Supercapacitor and Electrocatalytic Oxygen and Hydrogen Evolutioncitations
- 2023In Situ Sol-Gel Assembly of Graphitic Carbonitride Nanosheet-Supported Colloidal Binary Metal Sulfide into Nanosandwich-Like Multifunctional 3D Macroporous Aerogel Catalysts for Asymmetric Supercapacitor and Electrocatalytic Oxygen and Hydrogen Evolutioncitations
- 2023Thermal Study of Carbon-Fiber-Reinforced Polymer Composites Using Multiscale Modelingcitations
- 2023A Simple Method to Produce an Aluminum Oxide-Passivated Tungsten Diselenide/n-Type Si Heterojunction Solar Cell with High Power Conversion Efficiencycitations
- 2023A Simple Method to Produce an Aluminum Oxide-Passivated Tungsten Diselenide/n-Type Si Heterojunction Solar Cell with High Power Conversion Efficiencycitations
- 2023SILAR Synthesized Binder-Free, Hydrous Cobalt Phosphate Thin Film Electrocatalysts for OER Application: Annealing Effect on the Electrocatalytic Activitycitations
- 2022Intercalation-type pseudocapacitive clustered nanoparticles of nickel–cobalt phosphate thin films synthesized via electrodeposition as cathode for high-performance hybrid supercapacitor devicescitations
- 2019Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orangecitations
- 2019Temperature effects on electromechanical response of deposited piezoelectric sensors used in structural health monitoring of aerospace structurescitations
- 2018PZT/PZT and PZT/BiT Composite Piezo-Sensors in Aerospace SHM Applications: Photochemical Metal Organic + Infiltration Deposition and Characterizationcitations
- 2016Electrical properties of UV-irradiated thick film piezo-sensors on superalloy IN718 using photochemical metal organic depositioncitations
- 2015Thickness and thermal processing contribution on piezoelectric characteristics of Pb(Zr-Ti)O3 thick films deposited on curved IN738 using sol–gel techniquecitations
- 2013Effect of Mechanical Deformation on Thermoelectric Properties of p-Type (Bi0.225Sb0.775)2Te3 Alloyscitations
Places of action
Organizations | Location | People |
---|
article
Temperature effects on electromechanical response of deposited piezoelectric sensors used in structural health monitoring of aerospace structures
Abstract
Turbomachine components used in aerospace and power plant applications preferably require continuous structural health monitoring at various temperatures. The structural health of pristine and damaged superalloy compressor blades of a gas turbine engine was monitored using real electro-mechanical impedance of deposited thick film piezoelectric transducers at 20 and 200 C. IVIUM impedance analyzer was implemented in laboratory conditions for damage detection in superalloy blades, while a custom-architected frequency-domain transceiver circuit was used for semi-field circumstances. Recorded electromechanical impedance signals at 20 and 200 C acquired from two piezoelectric wafer active sensors bonded to an aluminum plate, near and far from the damage, were initially utilized for accuracy and reliability verification of the transceiver at temperatures >20 C. Damage formation in both the aluminum plate and blades showed a peak shift in the swept frequency along with an increase in the amplitude and number of impedance peaks. The thermal energy at 200 C, on the other hand, enforces a further subsequent peak shift in the impedance signal to pristine and damaged parts such that the anti-resonance frequency keeps reducing as the temperature increases. The results obtained from the impedance signals of both piezoelectric wafers and piezo-films, revealed that increasing the temperature somewhat decreased the real impedance amplitude and the number of anti-resonance peaks, which is due to an increase in permittivity and capacitance of piezo-sensors. A trend is also presented for artificial intelligence training purposes to distinguish the effect of the temperature versus damage formation in sample turbine compressor blades. Implementation of such a monitoring system provides a distinct advantage to enhance the safety and functionality of critical aerospace components working at high temperatures subjected to crack, wear, hot-corrosion and erosion.