People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Samal, Sneha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Shape Memory Behaviour of PMMA-Coated NiTi Alloy under Thermal Cyclecitations
- 2020Study of Interfacial Adhesion between Nickel-Titanium Shape Memory Alloy and a Polymer Matrix by Laser Surface Patterncitations
- 2017Thermal plasma technology: The prospective future in material processingcitations
- 2017Molecular design of melt-spinnable co-polymers as Si–B–C–N fiber precursorscitations
- 2016High‐Temperature Oxidation of Metalscitations
- 2015Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Shape Memory Behaviour of PMMA-Coated NiTi Alloy under Thermal Cycle
Abstract
<jats:p>Both poly(methyl methacrylate) (PMMA) and NiTi possess shape memory and biocompatibility behavior. The macroscale properties of PMMA–NiTi composites depend immensely on the quality of the interaction between two components. NiTi shape memory alloy (SMA) and superelastic (SE) sheets were spin coated on one side with PMMA. The composite was prepared by the spin coating method with an alloy-to-polymer-thickness ratio of 1:3. The bending stiffness and radius of curvature were calculated by using numerical and experimental methods during thermal cycles. The experimental radius curvatures in actuation have good agreement with the model. The change in shape results from the difference in coefficients of thermal expansion between PMMA and NiTi. Actuation temperatures were between 0 and 100 °C for the SMA–PMMA composite with a change in curvature from 10 to 120 mm with fixed Young’s modulus of PMMA at 3 GPa, and a change in Young’s modulus of NiTi from 30 to 70 GPa. PMMA–NiTi composites are useful as actuators and sensor elements.</jats:p>