Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ehrmann, Andrea

  • Google
  • 18
  • 47
  • 210

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Investigation the Optical Contrast Between Nanofiber Mats and Mammalian Cells Dyed with Fluorescent and Other Dyescitations
  • 2024Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review14citations
  • 2024Influence of Textile Substrates on the Adhesion of PJM-Printed MED610 and Surface Morphology ; Vpliv tekstilnega substrata na adhezijo smole MED610, natisnjene s tehniko kapljičnega nanašanja PJM, in morfologija površine1citations
  • 2024Comparison of FDM and SLA printing on woven fabrics2citations
  • 2023Exchange Bias in Nanostructures: An Update16citations
  • 2023Nanofibers are a matter of perspective: effects of methodology and subjectivity on diameter measurements4citations
  • 2023Examination of Polymer Blends by AFM Phase Images13citations
  • 2022Extraction of keratin from wool and its use as biopolymer in film formation and in electrospinning for composite material processing24citations
  • 2022Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques20citations
  • 2022Investigation of Low-Cost FDM-Printed Polymers for Elevated-Temperature Applications9citations
  • 2021Adhesion of Electrospun Poly(acrylonitrile) Nanofibers on Conductive and Isolating Foil Substrates12citations
  • 2021Pressure Orientation-Dependent Recovery of 3D-Printed PLA Objects with Varying Infill Degree14citations
  • 2021Coatings / Adhesion of Electrospun Poly(acrylonitrile) Nanofibers on Conductive and Isolating Foil Substrates12citations
  • 2019Improved abrasion resistance of textile fabrics due to polymer coatings7citations
  • 2019Stabilization of Electrospun Nanofiber Mats Used for Filters by 3D Printing39citations
  • 2019Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applicationscitations
  • 2019Electrospun Nanofiber Mats with Embedded Non-Sintered TiO2 for Dye-Sensitized Solar Cells (DSSCs)23citations
  • 2017Influence of Solution and Spinning Parameters on Nanofiber Mat Creation of Poly(ethylene oxide) by Needleless Electrospinningcitations

Places of action

Chart of shared publication
Dassmann, Nora
1 / 1 shared
Brockhagen, Bennet
3 / 3 shared
Sabantina, Lilia
5 / 14 shared
Langwald, Sarah Vanessa
1 / 1 shared
Joshi, Jnanada Shrikant
1 / 1 shared
Mpofu, Nonsikelelo Sheron
2 / 2 shared
Kozior, Tomasz
2 / 3 shared
Fiedler, Johannes
1 / 5 shared
Storck, Jan Lukas
2 / 2 shared
Büsgen, Alexander
1 / 1 shared
Tuvshinbayar, Khorolsuren
1 / 1 shared
Berger, Thomas
1 / 9 shared
Blachowicz, Tomasz
5 / 10 shared
Wortmann, Martin
5 / 7 shared
Kaltschmidt, Bernhard
1 / 1 shared
Westphal, Michael
1 / 1 shared
Hütten, Andreas
1 / 42 shared
Klöcker, Michaela
4 / 10 shared
Frese, Natalie
4 / 12 shared
Layland, Ashley S.
1 / 1 shared
Doepke, Christoph
1 / 1 shared
Güth, Uwe
2 / 2 shared
Werner, Enrico
1 / 1 shared
Diestelhorst, Elise
1 / 2 shared
Mahltig, Boris
1 / 5 shared
Goyal, Sahil
1 / 1 shared
Storck, Jan
1 / 2 shared
Dotter, Marius
1 / 3 shared
Mamun, Al
4 / 10 shared
Heide, Alexander
1 / 1 shared
Uthoff, Jana
1 / 1 shared
Homburg, Sarah Vanessa
1 / 1 shared
Ehrmann, Guido
2 / 2 shared
Cornelissen, Carsten
2 / 2 shared
Hellert, Christian
2 / 2 shared
Grotsch, Georg
2 / 2 shared
Moritzer, Elmar
1 / 3 shared
Gölzhäuser, Armin
1 / 23 shared
Hes, Lubos
1 / 1 shared
Trabelsi, Marah
3 / 7 shared
Großerhode, Christina
2 / 2 shared
Cornelißen, Carsten
1 / 1 shared
Grötsch, Georg
1 / 1 shared
Streitenberger, Almuth
1 / 1 shared
Grothe, Timo
1 / 1 shared
Brikmann, Johannes
1 / 2 shared
Meissner, Hubert
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2019
2017

Co-Authors (by relevance)

  • Dassmann, Nora
  • Brockhagen, Bennet
  • Sabantina, Lilia
  • Langwald, Sarah Vanessa
  • Joshi, Jnanada Shrikant
  • Mpofu, Nonsikelelo Sheron
  • Kozior, Tomasz
  • Fiedler, Johannes
  • Storck, Jan Lukas
  • Büsgen, Alexander
  • Tuvshinbayar, Khorolsuren
  • Berger, Thomas
  • Blachowicz, Tomasz
  • Wortmann, Martin
  • Kaltschmidt, Bernhard
  • Westphal, Michael
  • Hütten, Andreas
  • Klöcker, Michaela
  • Frese, Natalie
  • Layland, Ashley S.
  • Doepke, Christoph
  • Güth, Uwe
  • Werner, Enrico
  • Diestelhorst, Elise
  • Mahltig, Boris
  • Goyal, Sahil
  • Storck, Jan
  • Dotter, Marius
  • Mamun, Al
  • Heide, Alexander
  • Uthoff, Jana
  • Homburg, Sarah Vanessa
  • Ehrmann, Guido
  • Cornelissen, Carsten
  • Hellert, Christian
  • Grotsch, Georg
  • Moritzer, Elmar
  • Gölzhäuser, Armin
  • Hes, Lubos
  • Trabelsi, Marah
  • Großerhode, Christina
  • Cornelißen, Carsten
  • Grötsch, Georg
  • Streitenberger, Almuth
  • Grothe, Timo
  • Brikmann, Johannes
  • Meissner, Hubert
OrganizationsLocationPeople

article

Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques

  • Blachowicz, Tomasz
  • Ehrmann, Andrea
  • Klöcker, Michaela
  • Sabantina, Lilia
  • Mamun, Al
  • Heide, Alexander
Abstract

<jats:p>Electrospinning can be used to produce nanofiber mats containing diverse nanoparticles for various purposes. Magnetic nanoparticles, such as magnetite (Fe3O4), can be introduced to produce magnetic nanofiber mats, e.g., for hyperthermia applications, but also for basic research of diluted magnetic systems. As the number of nanoparticles increases, however, the morphology and the mechanical properties of the nanofiber mats decrease, so that freestanding composite nanofiber mats with a high content of nanoparticles are hard to produce. Here we report on poly (acrylonitrile) (PAN) composite nanofiber mats, electrospun by a needle-based system, containing 50 wt% magnetite nanoparticles overall or in the shell of core–shell fibers, collected on a flat or a rotating collector. While the first nanofiber mats show an irregular morphology, the latter are quite regular and contain straight fibers without many beads or agglomerations. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal agglomerations around the pure composite nanofibers and even, round core–shell fibers, the latter showing slightly increased fiber diameters. Energy dispersive X-ray spectroscopy (EDS) shows a regular distribution of the embedded magnetic nanoparticles. Dynamic mechanical analysis (DMA) reveals that mechanical properties are reduced as compared to nanofiber mats with smaller amounts of magnetic nanoparticles, but mats with 50 wt% magnetite are still freestanding.</jats:p>

Topics
  • nanoparticle
  • scanning electron microscopy
  • atomic force microscopy
  • composite
  • Energy-dispersive X-ray spectroscopy
  • electrospinning
  • dynamic mechanical analysis