People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ansari, Mohd Zahid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Numerical crashworthiness analysis of 2014 Aluminium- Silicon Carbide Particle (SiCp) foam filled Carbon Fiber-Reinforced Plastic (CFRP) tube under impact loading
- 2024Designing of high performance MoS<sub>2</sub>@VZnS//AC hybrid battery supercapacitor device for the electrochemical energy storage and glucose detectioncitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023Hole-Transport Material Engineering in Highly Durable Carbon-Based Perovskite Photovoltaic Devicescitations
- 2023Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor ; Příprava vysoce konformních tenkých filmů amorfního oxidu hafničitého pomocí depozice atomární vrstvev za použití tepelně stabilního prekurzoru hafnia obsahujícího boratabenzenový ligand pokrývajících velké plochycitations
- 2023In Situ Grown Heterostructure Based on MOF-Derived Carbon Containing n-Type Zn-In-S and Dry-Oxidative p-Type CuO as Pseudocapacitive Electrode Materialscitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
- 2022Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materialscitations
- 2021Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor ; Nízkoteplotní růst tenkých vrstev krystalického monosulfidu cínatého pomocí depozice atomových vrstev s využitím kapalného prekurzoru dvojmocného cínucitations
Places of action
Organizations | Location | People |
---|
article
Hole-Transport Material Engineering in Highly Durable Carbon-Based Perovskite Photovoltaic Devices
Abstract
<jats:p>Despite the fast-developing momentum of perovskite solar cells (PSCs) toward flexible roll-to-roll solar energy harvesting panels, their long-term stability remains to be the challenging obstacle in terms of moisture, light sensitivity, and thermal stress. Compositional engineering including less usage of volatile methylammonium bromide (MABr) and incorporating more formamidinium iodide (FAI) promises more phase stability. In this work, an embedded carbon cloth in carbon paste is utilized as the back contact in PSCs (having optimized perovskite composition), resulting in a high power conversion efficiency (PCE) of 15.4%, and the as-fabricated devices retain 60% of the initial PCE after more than 180 h (at the experiment temperature of 85 °C and under 40% relative humidity). These results are from devices without any encapsulation or light soaking pre-treatments, whereas Au-based PSCs retain 45% of the initial PCE at the same conditions with rapid degradation. In addition, the long-term device stability results reveal that poly[bis(4–phenyl) (2,4,6–trimethylphenyl) amine] (PTAA) is a more stable polymeric hole-transport material (HTM) at the 85 °C thermal stress than the copper thiocyanate (CuSCN) inorganic HTM for carbon-based devices. These results pave the way toward modifying additive-free and polymeric HTM for scalable carbon-based PSCs.</jats:p>