Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruivo, Andreia

  • Google
  • 4
  • 17
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024CIE color coordinates for the design of luminescent glass materials7citations
  • 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics5citations
  • 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics5citations
  • 2014Time-resolved luminescence studies of Eu3+ in soda-lime silicate glasses15citations

Places of action

Chart of shared publication
Laia, César
3 / 9 shared
Martins, Rodrigo
2 / 166 shared
Mendes, Manuel Joao
1 / 18 shared
Vaz Pinto, Joana
1 / 12 shared
Mateus, Tiago
2 / 12 shared
Águas, Hugo
3 / 41 shared
Ferro, Marta
2 / 3 shared
Santa, Ana
2 / 4 shared
Deuermeier, Jonas
2 / 38 shared
Pinheiro, Ana
2 / 2 shared
Rocha, João
2 / 14 shared
Gago, Sandra
2 / 4 shared
Mendes, Manuel J.
1 / 7 shared
Laia, César A. T.
1 / 1 shared
Pinto, Joana Vaz
1 / 3 shared
Matos, António Pires De
1 / 2 shared
Muralha, Vania S. F.
1 / 1 shared
Chart of publication period
2024
2023
2014

Co-Authors (by relevance)

  • Laia, César
  • Martins, Rodrigo
  • Mendes, Manuel Joao
  • Vaz Pinto, Joana
  • Mateus, Tiago
  • Águas, Hugo
  • Ferro, Marta
  • Santa, Ana
  • Deuermeier, Jonas
  • Pinheiro, Ana
  • Rocha, João
  • Gago, Sandra
  • Mendes, Manuel J.
  • Laia, César A. T.
  • Pinto, Joana Vaz
  • Matos, António Pires De
  • Muralha, Vania S. F.
OrganizationsLocationPeople

article

Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics

  • Laia, César
  • Martins, Rodrigo
  • Mendes, Manuel Joao
  • Ruivo, Andreia
  • Vaz Pinto, Joana
  • Mateus, Tiago
  • Águas, Hugo
  • Ferro, Marta
  • Santa, Ana
  • Deuermeier, Jonas
  • Pinheiro, Ana
  • Rocha, João
  • Gago, Sandra
Abstract

<jats:p>The present contribution aims to enhance solar cells’ performance via the development of advanced luminescent down-shifting based on encapsulated nanostructured perovskite materials. Here, thin films of inorganic lead halide (CsPbBr3) perovskite nanocrystal luminophores were synthetized, by hot-injection, deposited on glass substrates by spin-coating, and encapsulated with parylene type C, via chemical vapor deposition, to protect and stabilize the films. The optical properties of these thin films were characterized by absorption, emission and 2D contour spectra, their structure by X-ray diffraction and X-ray photoelectron spectroscopy, and the morphology by Scanning Transmission Electron microscopy. I–V curve and spectral response nanocrystalline silicon photovoltaic (nc-Si:H PV) cells were studied in the absence and presence of the perovskite and parylene luminescent down-shifting layers. The incorporation of the CsPbBr3 nanocrystals and their encapsulation with the parylene type C polymeric coating led to an increase in the current generated and the spectral response of the PV cells in the regime of the nanocrystals’ fluorescence emission. A 3.1% increase in the short circuit current density and a 5.6% increase in the power conversion efficiency were observed.</jats:p>

Topics
  • density
  • perovskite
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • glass
  • glass
  • transmission electron microscopy
  • Silicon
  • current density
  • chemical vapor deposition
  • power conversion efficiency