Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hond, Kit De

  • Google
  • 1
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Growth and crystallization of sio2/geo2 thin films on si(100) substrates4citations

Places of action

Chart of shared publication
Koster, Gertjan
1 / 31 shared
Lleonart, Jordi Antoja
1 / 2 shared
Rijnders, Guus
1 / 20 shared
Ocelík, Václav
1 / 127 shared
Zhou, Silang
1 / 10 shared
Noheda, Beatriz
1 / 41 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Koster, Gertjan
  • Lleonart, Jordi Antoja
  • Rijnders, Guus
  • Ocelík, Václav
  • Zhou, Silang
  • Noheda, Beatriz
OrganizationsLocationPeople

article

Growth and crystallization of sio2/geo2 thin films on si(100) substrates

  • Koster, Gertjan
  • Lleonart, Jordi Antoja
  • Rijnders, Guus
  • Ocelík, Václav
  • Zhou, Silang
  • Hond, Kit De
  • Noheda, Beatriz
Abstract

<p>The growth of α-quartz-based piezoelectric thin films opens the door to higher-frequency electromechanical devices than those available through top-down approaches. We report on the growth of SiO<sub>2</sub>/GeO<sub>2</sub> thin films by pulsed laser deposition and their subsequent crystallization. By introducing a devitrifying agent uniformly within the film, we are able to obtain the α-quartz phase in the form of platelets with lateral sizes above 100 µm at accessible temperatures. Films containing different amounts of devitrifying agent are investigated, and their crystallinity is ascertained with X-ray diffraction and electron back-scatter diffraction. Our work highlights the difficulty in crystallization when competing phases arise that have markedly different crystalline orientation.</p>

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • thin film
  • pulsed laser deposition
  • crystallization
  • crystallinity