Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Qudsia, Syeda

  • Google
  • 5
  • 22
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Scalable Lead Acetate-Based Perovskite Thin Films Prepared via Controlled Nucleation and Growth under Near Ambient Conditions2citations
  • 2022Physicochemical and biological characterization of silica-coated alumina particles3citations
  • 2021Real-time humidity sensing by integration of copper sulfide nanocomposite with low-cost and wireless Arduino platform14citations
  • 2020Investigation of well-defined pinholes in TiO 2 electron selective layers used in planar heterojunction perovskite solar cells22citations
  • 2020Investigation of well-defined pinholes in TiO2 electron selective layers used in planar heterojunction perovskite solar cells22citations

Places of action

Chart of shared publication
Smått, Jan-Henrik
2 / 8 shared
Rosqvist, Emil
1 / 12 shared
Masood, Muhammad Talha
3 / 5 shared
Hadadian, Mahboubeh
3 / 5 shared
Sirkiä, Saara
1 / 3 shared
Vallittu, Pekka K.
1 / 26 shared
Hupa, Leena
1 / 90 shared
Sirkiä, Saara V.
1 / 1 shared
Siekkinen, Minna
1 / 1 shared
Heino, Terhi J.
1 / 2 shared
Peltonen, Jouko
1 / 24 shared
Zniber, Mohammed
1 / 1 shared
Zouheir, Morad
1 / 6 shared
Huynh, Tan Phat
1 / 2 shared
Liu, Maning
2 / 28 shared
Dahlström, Staffan
2 / 6 shared
Weinberger, Christian
2 / 7 shared
Smått, Jan Henrik
2 / 2 shared
Nyman, Mathias
2 / 7 shared
Vivo, Paola
2 / 46 shared
Österbacka, Ronald
2 / 19 shared
Ahläng, Christian
2 / 2 shared
Chart of publication period
2024
2022
2021
2020

Co-Authors (by relevance)

  • Smått, Jan-Henrik
  • Rosqvist, Emil
  • Masood, Muhammad Talha
  • Hadadian, Mahboubeh
  • Sirkiä, Saara
  • Vallittu, Pekka K.
  • Hupa, Leena
  • Sirkiä, Saara V.
  • Siekkinen, Minna
  • Heino, Terhi J.
  • Peltonen, Jouko
  • Zniber, Mohammed
  • Zouheir, Morad
  • Huynh, Tan Phat
  • Liu, Maning
  • Dahlström, Staffan
  • Weinberger, Christian
  • Smått, Jan Henrik
  • Nyman, Mathias
  • Vivo, Paola
  • Österbacka, Ronald
  • Ahläng, Christian
OrganizationsLocationPeople

article

Investigation of well-defined pinholes in TiO2 electron selective layers used in planar heterojunction perovskite solar cells

  • Liu, Maning
  • Dahlström, Staffan
  • Weinberger, Christian
  • Smått, Jan Henrik
  • Masood, Muhammad Talha
  • Hadadian, Mahboubeh
  • Qudsia, Syeda
  • Nyman, Mathias
  • Vivo, Paola
  • Österbacka, Ronald
  • Ahläng, Christian
Abstract

The recently introduced perovskite solar cell (PSC) technology is a promising candidate for providing low-cost energy for future demands. However, one major concern with the technology can be traced back to morphological defects in the electron selective layer (ESL), which deteriorates the solar cell performance. Pinholes in the ESL may lead to an increased surface recombination rate for holes, if the perovskite absorber layer is in contact with the fluorine-doped tin oxide (FTO) substrate via the pinholes. In this work, we used sol-gel-derived mesoporous TiO2 thin films prepared by block co-polymer templating in combination with dip coating as a model system for investigating the effect of ESL pinholes on the photovoltaic performance of planar heterojunction PSCs. We studied TiO2 films with different porosities and film thicknesses, and observed that the induced pinholes only had a minor impact on the device performance. This suggests that having narrow pinholes with a diameter of about 10 nm in the ESL is in fact not detrimental for the device performance and can even, to some extent improve their performance. A probable reason for this is that the narrow pores in the ordered structure do not allow the perovskite crystals to form interconnected pathways to the underlying FTO substrate. However, for ultrathin (~20 nm) porous layers, an incomplete ESL surface coverage of the FTO layer will further deteriorate the device performance. ; Peer reviewed

Topics
  • porous
  • perovskite
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • thin film
  • tin
  • dip coating