Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Merino, Susana

  • Google
  • 2
  • 15
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Failure Analysis of Steam Generator Tubescitations
  • 2020Round Robin into best practices for the determination of indentation size effects22citations

Places of action

Chart of shared publication
Diego, Gonzalo
1 / 2 shared
Heintze, Cornelia
1 / 2 shared
Trebala, Michal
1 / 3 shared
Hähner, Peter
1 / 5 shared
Kurpaska, Lukasz
1 / 3 shared
Spätig, Philippe
1 / 11 shared
Jennett, Nigel
1 / 5 shared
Libera, Ondrej
1 / 1 shared
Ruiz-Moreno, Ana
1 / 1 shared
Khvan, Tymofii
1 / 4 shared
Hannula, Simo-Pekka
1 / 48 shared
Diego, Gonzalo De
1 / 1 shared
Namburi, Hygreeva
1 / 5 shared
Jagielski, Jacek
1 / 4 shared
Terentyev, Dimitry
1 / 2 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Diego, Gonzalo
  • Heintze, Cornelia
  • Trebala, Michal
  • Hähner, Peter
  • Kurpaska, Lukasz
  • Spätig, Philippe
  • Jennett, Nigel
  • Libera, Ondrej
  • Ruiz-Moreno, Ana
  • Khvan, Tymofii
  • Hannula, Simo-Pekka
  • Diego, Gonzalo De
  • Namburi, Hygreeva
  • Jagielski, Jacek
  • Terentyev, Dimitry
OrganizationsLocationPeople

article

Round Robin into best practices for the determination of indentation size effects

  • Heintze, Cornelia
  • Trebala, Michal
  • Hähner, Peter
  • Kurpaska, Lukasz
  • Spätig, Philippe
  • Jennett, Nigel
  • Libera, Ondrej
  • Ruiz-Moreno, Ana
  • Khvan, Tymofii
  • Hannula, Simo-Pekka
  • Diego, Gonzalo De
  • Merino, Susana
  • Namburi, Hygreeva
  • Jagielski, Jacek
  • Terentyev, Dimitry
Abstract

The paper presents a statistical study of nanoindentation results obtained in seven European laboratories which have joined a round robin exercise to assess methods for the evaluation of indentation size effects. The study focuses on the characterization of ferritic/martensitic steels T91 and Eurofer97, envisaged as structural materials for nuclear fission and fusion applications, respectively. Depth-controlled single cycle measurements at various final indentation depths, force-controlled single cycle and force-controlled progressive multi-cycle measurements using Berkovich indenters at room temperature have been combined to calculate the indentation hardness and the elastic modulus as a function of depth applying the Oliver and Pharr method. Intra- and inter-laboratory variabilities have been evaluated. Elastic modulus corrections have been applied to the hardness data to compensate for materials related systematic errors, like pile-up behaviour, which is not accounted for by the Oliver and Pharr theory, and other sources of instrumental or methodological bias. The correction modifies the statistical hardness profiles and allows determining more reliable indentation size effects.

Topics
  • impedance spectroscopy
  • theory
  • steel
  • hardness
  • nanoindentation