People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kowalczyk, Maciej
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2021Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursorscitations
- 2021Suppression and Recovery of Martensitic Transformation and Magnetism in Mechanically and Thermally Treated Magnetic Shape‐Memory Ni−Mn−Ga Melt‐Spun Ribbonscitations
- 2020Effect of pressure on the phase stability and magnetostructural transitions in nickel-rich NiFeGa ribbonscitations
- 2019Microstructural anisotropy, phase composition and magnetic properties of as-cast and annealed Ni-Mn-Ga-Co-Cu melt-spun ribbonscitations
- 2019Microstructural origins of martensite stabilization in Ni49Co1Mn37.5Sn6.5In6 metamagnetic shape memory alloycitations
- 2019On the magnetic contribution to the inverse magnetocaloric effect in Ni-Co-Cu-Mn-Sn metamagnetic shape memory alloyscitations
- 2019The evolution of microstructure and magneto-structural properties of heat treated ni-mn-sn-in heusler alloys sintered by vacuum hot pressing
- 2019Glass forming ability of Zr48Cu36Al16-xAgx alloys determined by three different methodscitations
- 2018Structure and inverse magnetocaloric effect in Ni-Co-Mn-Sn(Si) Heusler alloyscitations
- 2018Magnetic moments and exchange splitting in Mn3s and Mn2p core levels of magnetocaloric Mn 1.1 Fe 0.9 P 0.6 As 0.4 and Mn 1.1 Fe 0.9 P 0.5 As 0.4 Si 0.1 compoundscitations
- 2017Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloyscitations
- 2017Temperature-Driven Changes of Electronic Structure Through the Phase Transition in Magnetocaloric Compound Mn1.1Fe0.9P0.55As0.45citations
- 2017Magnetocaloric Properties of Mn1.1Fe0.9P0.5As0.5−xGex (0 ≤ x ≤ 0.1) Compoundscitations
- 2017Compositional dependence of hyperfine interactions and magnetoelectric coupling in (BiFeO3)x-(BaTiO3)1–x solid solutionscitations
- 2016Chemical hydrogenation of La(Fe,Si) family of intermetallic compoundscitations
- 2015Structure and some magnetic properties of (BiFeO3)(x)-(BaTiO3)(1-x) solid solutions prepared by solid-state sinteringcitations
- 2015Structure and some magnetic properties of (BiFeO3)x-(BaTiO3)1-x solid solutions prepared by solid-state sinteringcitations
- 2012Study of magnetic phases in mechanically alloyed Fe <inf>50</inf> Zn <inf>50</inf> powdercitations
- 2011Soft magnetic amorphous Fe–Zr–Si(Cu) boron-free alloyscitations
- 2010Structural and magnetic properties of the ball milled Fe <inf>56</inf> Pt <inf>24</inf> B <inf>20</inf> alloycitations
- 2010The supercooled liquid region span of Fe-based bulk metallic glassescitations
- 2010Novel amorphous Fe-Zr-Si(Cu) boron-free alloyscitations
- 2010Structural transformations and magnetic properties of Fe <inf>60</inf> Pt <inf>15</inf> B <inf>25</inf> and Fe <inf>60</inf> Pt <inf>25</inf> B <inf>15</inf> nanocomposite alloyscitations
- 2009Magnetic properties of the Fe48.75 Pt 26.25 B 25 nanostructured alloycitations
- 2009Structure and magnetic properties of magnetostrictive rapidly-quenched alloys for force sensors applicationscitations
- 2009Magnetocaloric effect in Fe-Cr-Cu-Nb-Si-B amorphous materialscitations
- 2008Evaluation on the reliability of criterions for glass-forming ability of Fe(Co)-based bulk metallic glassescitations
- 2006Magnetic study of Hitperm alloys (Fe0.5Co0.5)1–x –y –zMxByCuz (M = Hf, Zr, Nb)citations
- 2005Influence of structure on coercivity in nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloyscitations
- 2005Amorphous bulk alloys from Al-Mm-Ni system produced by hot compaction
Places of action
Organizations | Location | People |
---|
article
Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursors
Abstract
<p>Selective Laser Melting was successfully used as a fabrication method to produce Ni-MnGa and Ni-Mn-Ga-Fe ferromagnetic shape memory alloys. The starting material in a powder form with an average particle size of about 17.6 µm was produced by milling of as melt-spun ribbons. The microstructure, phase composition, and martensitic transformation behavior of both powder precursors and laser melted alloys were investigated by several methods, including high energy Xray diffraction, electron microscopy, and vibrating sample magnetometry. The as laser melted materials are chemically homogenous and show a typical layered microstructure. Both alloy compositions have a duplex structure consisting either of austenite and 10M martensite (Ni-Mn-Ga) or a mixture of 14M and NM martensitic phases (Ni-Mn-Ga-Fe), contrary to the as milled powder precursors showing fcc structure in both cases. The forward martensitic transformation takes place at 336 and 325 K for Ni-Mn-Ga and Ni-Mn-Ga-Fe, respectively, while the magnetic response is much stronger for Ni-Mn-Ga than for the quaternary alloy. The results show that Selective Laser Melting allows for producing of good quality, homogenous materials. However, their microstructural features and consequently shape memory behavior should be tailored by additional heat treatment.</p>