People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tabachkova, Natalia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023(Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: I–Synthesis, Sintering and Characterizationcitations
- 2023Effects of C Doping on the Structure and Functional Characteristics of Fe-Mn Alloys after Equal Channel Angular Pressing
- 2023Effect of Er, Si, Hf and Nb Additives on the Thermal Stability of Microstructure, Electrical Resistivity and Microhardness of Fine-Grained Aluminum Alloys of Al-0.25%Zrcitations
- 2023Effect of Samarium on the Properties of Hot-Extruded Mg–Y–Gd–Zr Alloyscitations
- 2023(Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: II–Radiation Test and Hydrolytic Stabilitycitations
- 2022Effect of High-Pressure Torsion on Microstructure, Mechanical and Operational Properties of Zn-1%Mg-0.1%Ca Alloycitations
- 2022Structure, Biodegradation, and In Vitro Bioactivity of Zn–1%Mg Alloy Strengthened by High-Pressure Torsioncitations
Places of action
Organizations | Location | People |
---|
article
Structure, Biodegradation, and In Vitro Bioactivity of Zn–1%Mg Alloy Strengthened by High-Pressure Torsion
Abstract
<jats:p>The effect of high-pressure torsion (HPT) on the microstructure, phase composition, mechanical characteristics, degradation rate, and bioactive properties of the Zn–1%Mg alloy is studied. An ultrafine-grained (UFG) structure with an average grain size of α-Zn equal to 890 ± 26 nm and grains and subgrains of the Mg2Zn11 and MgZn2 phases with a size of 50–100 nm are formed after HPT. This UFG structure leads to an increase in the ultimate tensile strength of the alloy by ~3 times with an increase in elongation to 6.3 ± 3.3% due to the formation of a basal texture. The study of corrosion resistance did not show a significant effect of HPT on the degradation rate of the alloy. In addition, no significant changes in the bioactivity of the alloy after HPT: hemolysis, cellular colonization and Escherichia coli growth inhibition.</jats:p>