People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hussain, Ghulam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2022Parametric Study and Optimization of End-Milling Operation of AISI 1522H Steel Using Definitive Screening Design and Multi-Criteria Decision-Making Approachcitations
- 2022Machining of Carbon Steel under Aqueous Environment: Investigations into Some Performance Measurescitations
- 2022Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blendcitations
- 2022Computational investigation of the dynamic response of silicon carbide ceramic under impact loading
- 2022Electronic and optical properties of InAs/InAs0.625Sb0.375 superlattices and their application for far-infrared detectorscitations
- 2022Prediction of properties of friction stir spot welded joints of AA7075-T651/Ti-6Al-4V alloy using machine learning algorithmscitations
- 2022Investigation on Mechanical and Durability Properties of Concrete Mixed with Silica Fume as Cementitious Material and Coal Bottom Ash as Fine Aggregate Replacement Materialcitations
- 2022Supply Chain Modelling of the Automobile Multi-Stage Production Considering Circular Economy by Waste Management Using Recycling and Reworking Operationscitations
- 2021Impact Toughness of Hybrid Carbon Fiber-PLA/ABS Laminar Composite Produced through Fused Filament Fabricationcitations
- 2021The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural propertiescitations
- 2021Fuzzy Logic-Based Prediction of Drilling-Induced Temperatures at Varying Cutting Conditions along with Analysis of Chips Morphology and Burrs Formation
citations
- 2021An experimental study on interfacial fracture toughness of 3-D printed ABS/CF-PLA composite under mode I, II, and mixed-mode loadingcitations
- 2021Strain Wave Analysis in Carbon-Fiber-Reinforced Composites subjected to Drop Weight Impact Test using ANSYS®citations
- 2021Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheetcitations
- 2021Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayercitations
- 2020Thermoelastic Investigation of Carbon-Fiber-Reinforced Composites Using a Drop-Weight Impact Testcitations
- 2020Biocompatibility and corrosion resistance of metallic biomaterialscitations
- 2020Experimental Investigations on the Effects of Rotational Speed on Temperature and Microstructure Variations in Incremental Forming of T6- Tempered and Annealed AA2219 Aerospace Alloycitations
- 2017Development of a TiC/Cr 23 C 6 composite coating on a 304 stainless steel substrate through a tungsten inert gas processcitations
Places of action
Organizations | Location | People |
---|
article
Parametric Study and Optimization of End-Milling Operation of AISI 1522H Steel Using Definitive Screening Design and Multi-Criteria Decision-Making Approach
Abstract
<jats:p>End-milling operation of steel grade material is a challenging task as it is hard-to-cut material. Proper selection of cutting tools, cutting conditions, and cutting process parameters is important to improve productivity, surface quality, and tool life. Therefore, the present study investigated the end-milling operation of AISI 1522H steel grade under minimum-quantity lubrication (MQL) conditions using a novel blend of vegetable oils, namely canola and olive oil. Cutting process parameters considered were spindle speed (s), feed rate (f), depth of cut (d), width of cut (w), and cutting conditions (c), while responses were average surface roughness (Ra), cutting forces (Fc), tool wear (TW), and material removal rate (MRR). Experimental runs were designed based on the definitive screening design (DSD) method. Analysis of variance (ANOVA) results show that feed rate significantly affects all considered responses. Nonlinear prediction models were developed for each response variable, and their validity was also verified. Finally, multi-response optimization was performed using the combinative distance-based assessment (CODAS) method coupled with criteria importance through inter-criteria correlation (CRITIC). The optimized parameters found were: s = 1200 rpm, f = 320 mm/min, d = 0.6 mm, w = 8 mm, and c = 100 mL/h. Further, it was compared with other existing multi-response optimization methods and induced good results.</jats:p>