People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Batistella, Marcos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranescitations
- 20233D printing of fire-retardant biopolymers
- 2023Thermal conductivity of glass/talc filled Polyamide 12 as function of tapping level
- 2022The influence of montmorillonite on the flame‐retarding properties of intumescent bio‐based PLA compositescitations
- 2022Viscoelastic behaviour of novel thermoplastic elastomer blends for fused filament fabrication (FFF)
- 2022Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonitecitations
- 2022Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonitecitations
- 2022Influence of the microstructure on the electrical properties of 3D printed PLA/PCL/GNP composites
- 2022Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Techniquecitations
- 2022The influence of montmorillonite on the flame‐retarding properties of intumescent bio‐based <scp>PLA</scp> compositescitations
- 2022Influence of Polymer Processing on the Double Electrical Percolation Threshold in PLA/PCL/GNP Nanocompositescitations
- 2022Laser sintering of coated polyamide 12: a new way to improve flammabilitycitations
- 2022Polymer processing influence on the double electrical percolation threshold in PLA/PCL/GNP nanocomposites
- 2021Modification of poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) via free‐radical grafting and its photo‐crosslinkingcitations
- 2021Functionalization of cellulosic fibers with a kaolinite-TiO2 nano-hybrid composite via a solvothermal process for flame retardant applicationscitations
- 2021Fused filament fabrication (fff) of electrically conductive pla/pcl/graphene nanoplatelets (gnp) bionanocomposites
- 2021Fused filament fabrication (fff) of electrically conductive pla/pcl/graphene nanoplatelets (gnp) bionanocomposites
- 2021Modification of poly(styrene‐<i>b</i>‐(ethylene‐<i>co</i>‐butylene)‐<i>b</i>‐styrene) via free‐radical grafting and its photo‐crosslinkingcitations
- 2020Kinetic and thermodynamic parameters guiding the localization of regioselectively modified kaolin platelets into a PS/PA6 co-continuous blendcitations
- 2019PA 12 nanocomposites and flame retardants compositions processed through selective laser sintering
- 2016Fire retardancy of polypropylene/kaolinite compositescitations
- 2014Fire retardancy of ethylene vinyl acetate/ultrafine kaolinite compositescitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique
Abstract
International audience ; For the purpose of fabricating electrically conductive composites via the fused filament fabrication (FFF) technique whose properties were compared with injection-moulded properties, poly(lactic acid) (PLA) and polycaprolactone (PCL) were mixed with different contents of graphene nanoplatelets (GNP). The wettability, morphological, rheological, thermal, mechanical, and electrical properties of the 3D-printed samples were investigated. The microstructural images showed the selective localization of the GNPs in the PCL nodules that are dispersed in the PLA phase. The electrical resistivity results using the four-probes method revealed that the injection-moulded samples are insulators, whereas the 3D-printed samples featuring the same graphene content are semiconductors. Varying the printing raster angles also exerted an influence on the electrical conductivity results. The electrical percolation threshold was found to be lower than 15 wt.%, whereas the rheological percolation threshold was found to be lower than 10 wt.%. Furthermore, the 20 wt.% and 25 wt.% GNP composites were able to connect an electrical circuit. An increase in the Young’s modulus was shown with the percentage of graphene. As a result, this work exhibited the potential of the FFF technique to fabricate biodegradable electrically conductive PLA-PCL-GNP composites that can be applicable in the electronic domain.