People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fiorio, Rudinei
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Root causes of post-consumer high-density polyethylene failing in new bottlescitations
- 2024Anchoring Ties:Improving Environmental Stress Crack Resistance in HDPE with Styrenic Triblock Copolymer
- 2023Soybean-Based Polyol as a Substitute of Fossil-Based Polyol on the Synthesis of Thermoplastic Polyurethanescitations
- 2022Tuning Thermal, Morphological, and Physicochemical Properties of Thermoplastic Polyurethanes (TPUs) by the 1,4-Butanediol (BDO)/Dipropylene Glycol (DPG) Ratio.citations
- 2022Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters : a combined experimental and theoretical studycitations
- 2022Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters : a combined experimental and theoretical studycitations
- 2022Exploiting mono‐ and hybrid nanocomposite materials for fused filament fabrication with acrylonitrile butadiene styrene as polymer matrixcitations
- 2022Upgrading theoretical models for understanding selective laser sintering parameters for polymeric materials
- 2022Exploiting mono‐ and hybrid nanocomposite materials for fused filament fabrication with <scp>acrylonitrile butadiene styrene</scp> as polymer matrixcitations
- 2022Tuning thermal, morphological, and physicochemical properties of thermoplastic polyurethanes (tpus) by the 1,4-butanediol (bdo)/dipropylene glycol (dpg) ratiocitations
- 2022The influence of the filament manufacturing technique on the degradation, mechanical properties, and dispersion state of ABS-graphene printed nanocomposites
- 2022Increasing the sustainability of the hybrid mold technique through combined insert polymeric material and additive manufacturing method designcitations
- 2021A combined experimental and modeling study for pellet-fed extrusion-based additive manufacturing to evaluate the impact of the melting efficiencycitations
- 2021Influence of machine type and consecutive closed-loop recycling on macroscopic properties for fused filament fabrication of acrylonitrile-butadiene-styrene partscitations
- 2020Influence of different stabilization systems and multiple ultraviolet A (UVA) aging/recycling steps on physicochemical, mechanical, colorimetric, and thermal-oxidative properties of ABScitations
- 2019A statistical analysis on the effect of antioxidants on the thermal-oxidative stability of commercial mass- and emulsion-polymerized ABScitations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)citations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
Places of action
Organizations | Location | People |
---|
article
A combined experimental and modeling study for pellet-fed extrusion-based additive manufacturing to evaluate the impact of the melting efficiency
Abstract
To improve the product quality of polymeric parts realized through extrusion-based additive manufacturing (EAM) utilizing pellets, a good control of the melting is required. In the present work, we demonstrate the strength of a previously developed melt removal using a drag framework to support such improvement. This model, downscaled from conventional extrusion, is successfully validated for pellet-based EAM—hence, micro-extrusion—employing three material types with different measured rheological behavior, i.e., acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA) and styrene-ethylene-butylene-styrene polymer (SEBS). The model’s validation is made possible by conducting for the first time dedicated EAM screw-freezing experiments combined with appropriate image/data analysis and inputting rheological data. It is showcased that the (overall) processing temperature is crucial to enable similar melting efficiencies. The melting mechanism can vary with the material type. For ABS, an initially large contribution of viscous heat dissipation is observed, while for PLA and SEBS thermal conduction is always more relevant. It is highlighted based on scanning electron microscopy (SEM) analysis that upon properly tuning the finalization of the melting point within the envisaged melting zone, better final material properties are achieved. The model can be further used to find an optimal balance between processing time (e.g., by variation of the screw frequency) and material product performance (e.g., strength of the printed polymeric part).