People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Praus, Petr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Metal-free hybrid nanocomposites of graphitic carbon nitride and char: Synthesis, characterisation and photocatalysis under visible irradiationcitations
- 2023Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiationcitations
- 2023Graphitic carbon nitride/xylene soot metal-free nanocomposites for photocatalytic degradation of organic compoundscitations
- 2020Graphitic Carbon Nitride for Photocatalytic Air Treatmentcitations
- 2019Photocatalytic Decomposition of N2O by Using Nanostructured Graphitic Carbon Nitride/Zinc Oxide Photocatalysts Immobilized on Foamcitations
Places of action
Organizations | Location | People |
---|
article
Graphitic Carbon Nitride for Photocatalytic Air Treatment
Abstract
<jats:p>Graphitic carbon nitride (g-C3N4) is a conjugated polymer, which recently drew a lot of attention as a metal-free and UV and visible light responsive photocatalyst in the field of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability and earth-abundant nature. In the present work, bulk g-C3N4 was synthesized by thermal decomposition of melamine. This material was further exfoliated by thermal treatment. S-doped samples were prepared from thiourea or further treatment of exfoliated g-C3N4 by mesylchloride. Synthesized materials were applied for photocatalytic removal of air pollutants (acetaldehyde and NOx) according to the ISO 22197 and ISO 22197-1 methodology. The efficiency of acetaldehyde removal under UV irradiation was negligible for all g-C3N4 samples. This can be explained by the fact that g-C3N4 under irradiation does not directly form hydroxyl radicals, which are the primary oxidation species in acetaldehyde oxidation. It was proved by electron paramagnetic resonance (EPR) spectroscopy that the dominant species formed on the irradiated surface of g-C3N4 was the superoxide radical. Its production was responsible for a very high NOx removal efficiency not only under UV irradiation (which was comparable with that of TiO2), but also under visible irradiation.</jats:p>