Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Waqas, Hafiz Muhammad

  • Google
  • 1
  • 5
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Design Optimization and Non-Linear Buckling Analysis of Spherical Composite Submersible Pressure Hull20citations

Places of action

Chart of shared publication
Khan, Asghar
1 / 1 shared
Uddin, Muqeem
1 / 1 shared
Tong, Lili
1 / 1 shared
Shi, Dongyan
1 / 1 shared
Imran, Muhammad
1 / 60 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Khan, Asghar
  • Uddin, Muqeem
  • Tong, Lili
  • Shi, Dongyan
  • Imran, Muhammad
OrganizationsLocationPeople

article

Design Optimization and Non-Linear Buckling Analysis of Spherical Composite Submersible Pressure Hull

  • Khan, Asghar
  • Waqas, Hafiz Muhammad
  • Uddin, Muqeem
  • Tong, Lili
  • Shi, Dongyan
  • Imran, Muhammad
Abstract

<jats:p>This paper describes an optimization study of a spherical composite submersible pressure hull employing a genetic algorithm (GA) in ANSYS. A total of five lay-up arrangements were optimized for three unidirectional composites carbon/epoxy, glass/epoxy, and boron/epoxy. The minimization of the buoyancy factor(B . F)was selected as the design optimization objective. The Tsai-Wu and Tsai-Hill failure criteria and buckling strength factor( λ )were used as the material failure and instability constraints. To determine the effect of geometric non-linearity and imperfections on the optimized design, a non-linear buckling analysis was also carried out for one selected optimized design in ABAQUS. The non-linear buckling analysis was carried out using the modified RIKS procedure, in which the imperfection size changed from 1 to 10 mm. A maximum decrease of 65.937% in buoyancy factor(B . F)over an equivalent spherical steel pressure hull was computed for carbon/epoxy. Moreover, carbon/epoxy displayed larger decreases in buoyancy factor(B . F)in the case of 4 out of a total of 5 lay-up arrangements. The collapse depth decreased from 517.95 m to 412.596 m for a 5 mm lowest mode imperfection. Similarly, the collapse depth decreased from 522.39 m to 315.6018 for a 5 mm worst mode imperfection.</jats:p>

Topics
  • Carbon
  • glass
  • glass
  • strength
  • steel
  • composite
  • Boron