People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baere, Dieter De
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Experimental evaluation of the metal powder particle flow on the melt pool during directed energy depositioncitations
- 2023Comparison and Analysis of Hyperspectral Temperature Data in Directed Energy Depositioncitations
- 2020Spatial distributed spectroscopic monitoring of melt pool and vapor plume during the laser metal deposition processcitations
- 2019Hyperspectral and Thermal Temperature Estimation During Laser Claddingcitations
- 2019Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturingcitations
- 2019On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugscitations
- 2018Fatigue performance of powder bed fused Ti-6Al-4V component with integrated chemically etched capillary for structural health monitoring application.citations
- 2018Effective Structural Health Monitoring through the Monitoring of Pressurized Capillaries in Additive Manufactured Materials
- 2017Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Application
- 2017Proof of Concept of Integrated Load Measurement in 3D Printed Structurescitations
- 2017Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imagingcitations
- 2017Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring Systemcitations
- 2016Hardware-in-the-loop control of additive manufacturing processes using temperature feedbackcitations
- 2016Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Meltingcitations
- 2016Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition processcitations
- 2016Evaluation of the Diffuse Reflectivity Behaviour of the Melt Pool During the Laser Metal Deposition Process
- 2016Assessment of eSHM system combining different NDT methods
- 2016Temperature Feedback Control of Laser Cladding Using High Resolution Hyperspectral Imaging
- 2015Modeling of laser beam and powder flow interaction in laser cladding using ray-tracingcitations
- 2015Feasibility study on integrated structural health monitoring system produced by metal three-dimensional printingcitations
- 2015Hardware-in-the-loop control of additive manufacturing processes using temperature feedback
- 2015Acoustic emission monitoring of crack propagation in titanium samples
- 2015Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition process
- 2014A combination of Additive Manufacturing Technologies and Structural Health Monitoring systems as an intelligent structure
- 2014Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing
- 2007Structural Health Monitoring of Slat Tracks using transient ultrasonic waves
Places of action
Organizations | Location | People |
---|
article
Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System
Abstract
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimens without capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.