People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wlodarczyk, Krystian L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022A Novel Process for Manufacturing High-Friction Rings with a Closely Defined Coefficient of Static Friction (Relative Standard Deviation 3.5%) for Application in Ship Engine Componentscitations
- 2021Laser-manufactured glass microfluidic devices with embedded sensors
- 2021Maskless laser prototyping of glass microfluidic devices
- 2019Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glasscitations
- 2018Laser-based fabrication of microfluidic devices for porous media applicationscitations
- 2018Rapid Laser Manufacturing of Microfluidic Devices from Glass Substratescitations
- 2017Fabrication of three-dimensional micro-structures in glass by picosecond laser micro-machining and welding
- 2017Laser spot welding of laser textured steel to aluminiumcitations
- 2017Anti-counterfeiting security markings for metal goods
- 2015Electrodeposited magnetostrictive Fe-Ga alloys for miniaturised actuatorscitations
- 2015Laser surface texturing for high friction contactscitations
- 2015Laser processing of thin flex glass for microelectronic, OLED lighting, display and PV applications
- 2014Nanosecond laser texturing for high friction applicationscitations
- 2014Laser texturing for high friction applicationscitations
- 2012Generation of optical quality structured surfaces on borosilicate glass using 515nm picosecond laser pulses and a liquid-crystal-based spatial light modulator
Places of action
Organizations | Location | People |
---|
article
Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glass
Abstract
We provide experimental evidence that the laser beam scanning strategy has a significant influence on material removal rate in the ultrafast laser machining of glass. A comparative study of two laser beam scanning methods, (i) bidirectional sequential scanning method (SM) and (ii) bidirectional interlaced scanning method (IM), is presented for micromachining 1.1-mm-thick borosilicate glass plates (Borofloat® 33). Material removal rate and surface roughness are measured for a range of pulse energies, overlaps, and repetition frequencies. With a pulse overlap of ≤90%, IM can provide double the ablation depth and double the removal rate in comparison to SM, whilst maintaining very similar surface roughness. In both cases, the root-mean-square (RMS) surface roughness (Sq) was in the range of 1 μm to 2.5 μm. For a 95% pulse overlap, the difference was more pronounced, with IM providing up to four times the ablation depth of SM; however, this is at the cost of a significant increase in surface roughness (Sq values >5 μm). The increased ablation depths and removal rates with IM are attributed to a layer-by-layer material removal process, providing more efficient ejection of glass particles and, hence, reduced shielding of the machined area. IM also has smaller local angles of incidence of the laser beam that potentially can lead to a better coupling efficiency of the laser beam with the material.