People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liebig, Wilfried V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Crystallization and crystal morphology of polymers: A multiphase-field study
- 2024Deep convolutional generative adversarial network for generation of computed tomography images of discontinuously carbon fiber reinforced polymer microstructurescitations
- 2024Characterization and simulation of the interface between a continuous and discontinuous carbon fiber reinforced thermoplastic by using the climbing drum peel test considering humiditycitations
- 2023Wide Scale Characterization and Modeling of the Vibration and Damping Behavior of CFRP-Elastomer-Metal Laminates—Comparison and Discussion of Different Test Setups
- 2023Investigation of the friction behavior between dry/infiltrated glass fiber fabric and metal sheet during deep drawing of fiber metal laminatescitations
- 2023Investigation of the friction behavior between dry/infiltrated glass fiber fabric and metal sheet during deep drawing of fiber metal laminatescitations
- 2023Continuous simulation of a continuous-discontinuous fiber-reinforced thermoplastic (CODICOFRTP) Compression molding process
- 2022Investigation of the friction behavior between dry/infiltrated glass fiber fabric and metal sheet during deep drawing of fiber metal laminates
- 2022Investigation into the influence of the Mullins effect on the dynamic behavior of hybrid laminates
- 2022Characterization of the corrosion resistance of composite peened aluminumcitations
- 2022Application of a Tensor Interpolation Method on the Determination of Fiber Orientation Tensors From Computed Tomography Images
- 2022Development of an Injection Molding Process for Long Glass Fiber-Reinforced Phenolic Resinscitations
- 2022Determination of the penetration depth of ceramic blasting particles during composite peeningcitations
- 2022Development of an injection molding process for long glass fiber-reinforced phenolic resinscitations
- 2022Effects of hybridization on the tension–tension fatigue behavior of continuous-discontinuous fiber-reinforced sheet molding compound composites
- 2022Study of material homogeneity in the long fiber thermoset injection molding process by image texture analysiscitations
- 2022Fatigue behavior of hybrid continuous-discontinuous fiber-reinforced sheet molding compound composites under application-related loading conditionscitations
- 2021Wide Scale Characterization and Modeling of the Vibration and Damping Behavior of CFRP-Elastomer-Metal Laminates—Comparison and Discussion of Different Test Setupscitations
- 2021Compounding of short fiber reinforced phenolic resin by using specific mechanical energy input as a process control parametercitations
- 2021Wide scale characterization and modeling of the vibration and damping behavior of CFRP-elastomer-metal laminates — comparison and discussion of different test setupscitations
- 2021Characterization of the Corrosion Resistance of Composite Peened Aluminumcitations
- 2021Characterization of the Corrosion Resistance of Composite Peened Aluminum
- 2019A Multi-Scale Approach for the Virtual Characterization of Transversely Isotropic Viscoelastic Materials in the Frequency Domain
- 2019Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy compositecitations
- 2019Damping characterization of hybrid carbon fiber elastomer metal laminates using experimental and numerical dynamic mechanical analysiscitations
- 2019Application of a mixed variational higher order plate theory towards understanding the deformation behavior of hybrid laminates
- 2017Compression fracture of CFRP laminates containing stress intensifications
- 2017Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes
- 2016Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy compositecitations
Places of action
Organizations | Location | People |
---|
article
Compounding of short fiber reinforced phenolic resin by using specific mechanical energy input as a process control parameter
Abstract
For a newly developed thermoset injection molding process, glass fiber-reinforced phenolic molding compounds with fiber contents between 0 wt% and 60 wt% were compounded. To achieve a comparable remaining heat of the reaction in all compound formulations, the specific mechanical energy input (SME) during the twin-screw extruder compounding process was used as a control parameter. By adjusting the extruder screw speed and the material throughput, a constant SME into the resin was targeted. Validation measurements using differential scanning calorimetry showed that the remaining heat of the reaction was higher for the molding compounds with low glass fiber contents. It was concluded that the SME was not the only influencing factor on the resin crosslinking progress during the compounding. The material temperature and the residence time changed with the screw speed and throughput, and most likely influenced the curing. However, the SME was one of the major influence factors, and can serve as an at-line control parameter for reactive compounding processes. The mechanical characterization of the test specimens revealed a linear improvement in tensile strength up to a fiber content of 40–50 wt%. The unnotched Charpy impact strength at a 0° orientation reached a plateau at fiber fractions of approximately 45 wt%.