Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sitarz, Mateusz

  • Google
  • 4
  • 5
  • 86

Cracow University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology1citations
  • 2020Mechanical behaviour and permeability of geopolymer mortars5citations
  • 2020Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition50citations
  • 2020Rheology and Mechanical Properties of Fly Ash-Based Geopolymer Mortars with Ground Granulated Blast Furnace Slag Addition30citations

Places of action

Chart of shared publication
Hager, Izabela
1 / 6 shared
Ziejewska, Celina
1 / 3 shared
Mróz, Katarzyna
1 / 3 shared
Kozub, Barbara
1 / 2 shared
Gądek, Szymon
1 / 2 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Hager, Izabela
  • Ziejewska, Celina
  • Mróz, Katarzyna
  • Kozub, Barbara
  • Gądek, Szymon
OrganizationsLocationPeople

article

Evolution of Mechanical Properties with Time of Fly-Ash-Based Geopolymer Mortars under the Effect of Granulated Ground Blast Furnace Slag Addition

  • Sitarz, Mateusz
Abstract

<jats:p>Geopolymers are considered to alternatives to Portland cement, providing an opportunity to exploit aluminosilicate wastes or co-products with promising performances in the construction sector. This research is aimed at investigating the strength of fly-ash-geopolymers of different ages. The effect of granulated blast furnace slag (GGBFS) as a partial replacement of fly ash (FA) on the tensile (ft) and compressive strength (fc), as well as the modulus of elasticity, is investigated. The main advantage of the developed geopolymer mixes containing GGBFS is their ability to set and harden at room temperature with no need for heating to obtain binding properties, reducing the energy consumption of their production processes. This procedure presents a huge advantage over binders requiring heat curing, constituting a significant energy savings and reduction of CO2 emissions. It is found that the development of strength strongly depends on the ratio of fly-ash to granulated blast furnace slag. With the highest amount of GGBFS, the compressive strength of geopolymers made of fly-ash reached 63 MPa after 28 days of curing at ambient temperature. The evolution of compressive strength with time is correlated with the development of ultrasound pulse velocity methods, which are used to evaluate maturity. The modulus of elasticity changes with strength and the relationship obtained for the geopolymer is presented on the basis of typical models used for cement-based materials. The tensile to compressive strength ratios of the tested geopolymers are identified as higher than for cementitious binders, and the ft(fc) relationship is juxtaposed with dependencies known for cement binders, showing that the square root function gives the best fit to the results.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • cement
  • elasticity
  • thermal curing