Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pou, Paula

  • Google
  • 1
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Polymer-Infiltrated Ceramic Network Produced by Direct Ink Writing: The Effects of Manufacturing Design on Mechanical Properties1citations

Places of action

Chart of shared publication
Cabrera, Jose Maria
1 / 9 shared
Yarahmadi, Mona
1 / 2 shared
Llanes, Luis
1 / 17 shared
Fargas, Gemma
1 / 4 shared
Elizalde, Sergio
1 / 2 shared
Zhang, Junhui
1 / 3 shared
Hodásová, Ludmila
1 / 3 shared
Armelin, Elaine
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Cabrera, Jose Maria
  • Yarahmadi, Mona
  • Llanes, Luis
  • Fargas, Gemma
  • Elizalde, Sergio
  • Zhang, Junhui
  • Hodásová, Ludmila
  • Armelin, Elaine
OrganizationsLocationPeople

article

Polymer-Infiltrated Ceramic Network Produced by Direct Ink Writing: The Effects of Manufacturing Design on Mechanical Properties

  • Cabrera, Jose Maria
  • Yarahmadi, Mona
  • Llanes, Luis
  • Fargas, Gemma
  • Elizalde, Sergio
  • Pou, Paula
  • Zhang, Junhui
  • Hodásová, Ludmila
  • Armelin, Elaine
Abstract

<jats:p>Polymer-infiltrated ceramic network (PICN) materials have gained considerable attention as tooth-restorative materials due to their mechanical compatibility with human teeth, especially with computer-aided design and computer-aided manufacturing (CAD/CAM) technologies. However, the designed geometry affects the mechanical properties of PICN materials. This study aims to study the relationship between manufacturing geometry and mechanical properties. In doing so, zirconia-based PICN materials with different geometries were fabricated using a direct ink-writing process, followed by copolymer infiltration. Comprehensive analyses of the microstructure and structural properties of zirconia scaffolds, as well as PICN materials, were performed. The mechanical properties were assessed through compression testing and digital image correlation analysis. The results revealed that the compression strength of PICN pieces was significantly higher than the respective zirconia scaffolds without polymer infiltration. In addition, two geometries (C-grid 0 and C-grid 45) have the highest mechanical performance.</jats:p>

Topics
  • microstructure
  • strength
  • ceramic
  • copolymer
  • collision-induced dissociation