Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Filip, Jan

  • Google
  • 6
  • 30
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination21citations
  • 2022Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene64citations
  • 2022Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions5citations
  • 2016Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3‐hydroxybutyrate) and micro‐fibrillated bacterial cellulose47citations
  • 2016P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineering14citations
  • 2006Phase composition of steel–enamel interfaces: Effects of chemical pre-treatment22citations

Places of action

Chart of shared publication
Oborná, Jana
1 / 1 shared
Micic, Vesna
1 / 1 shared
Hofmann, Thilo
2 / 8 shared
Tunega, Daniel
2 / 5 shared
Brumovský, Miroslav
2 / 2 shared
Karlický, Frantisek
1 / 1 shared
Kaslik, Josef
1 / 1 shared
Kolos, Miroslav
1 / 1 shared
Micić, Vesna
1 / 1 shared
Malina, Ondrez
1 / 1 shared
Dhawale, Somnath
1 / 1 shared
Zboril, Radek
1 / 15 shared
Kadam, Ravishankar G.
1 / 5 shared
Sharma, Priti
1 / 2 shared
Kumar, Subodh
1 / 2 shared
Gawande, Prof. Manoj B.
1 / 2 shared
Munde, Ajay
1 / 1 shared
Šafaříková, M.
1 / 10 shared
Keshavarz, Tajalli
2 / 4 shared
Akaraonye, Everest
2 / 2 shared
Salih, Vehid
2 / 28 shared
Knowles, Jonathan C.
2 / 33 shared
Roy, Ipsita
2 / 17 shared
Safarikova, Mirka
1 / 1 shared
Mašláň, Miroslav
1 / 1 shared
Schaaf, P.
1 / 8 shared
Hrabovská, Kamila
1 / 1 shared
Zbořil, Radek
1 / 17 shared
Barčová, Karla
1 / 1 shared
Podjuklová, Jitka
1 / 1 shared
Chart of publication period
2023
2022
2016
2006

Co-Authors (by relevance)

  • Oborná, Jana
  • Micic, Vesna
  • Hofmann, Thilo
  • Tunega, Daniel
  • Brumovský, Miroslav
  • Karlický, Frantisek
  • Kaslik, Josef
  • Kolos, Miroslav
  • Micić, Vesna
  • Malina, Ondrez
  • Dhawale, Somnath
  • Zboril, Radek
  • Kadam, Ravishankar G.
  • Sharma, Priti
  • Kumar, Subodh
  • Gawande, Prof. Manoj B.
  • Munde, Ajay
  • Šafaříková, M.
  • Keshavarz, Tajalli
  • Akaraonye, Everest
  • Salih, Vehid
  • Knowles, Jonathan C.
  • Roy, Ipsita
  • Safarikova, Mirka
  • Mašláň, Miroslav
  • Schaaf, P.
  • Hrabovská, Kamila
  • Zbořil, Radek
  • Barčová, Karla
  • Podjuklová, Jitka
OrganizationsLocationPeople

article

Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions

  • Dhawale, Somnath
  • Zboril, Radek
  • Filip, Jan
  • Kadam, Ravishankar G.
  • Sharma, Priti
  • Kumar, Subodh
  • Gawande, Prof. Manoj B.
  • Munde, Ajay
Abstract

<jats:p>Hydrazine oxidation in single-atom catalysts (SACs) could exploit the efficiency of metal atom utilization, which is a substitution for noble metal-based electrolysers that results in reduced overall cost. A well-established ruthenium single atom over mesoporous carbon nitride (SRu-mC3N4) catalyst is explored for the electro-oxidation of hydrazine as one of the model reactions for direct fuel cell reactions. The electrochemical activity observed with linear sweep voltammetry (LSV) confirmed that SRu-mC3N4 shows an ultra-low onset potential of 0.88 V vs. RHE, and with a current density of 10 mA/cm2 the observed potential was 1.19 V vs. RHE, compared with mesoporous carbon nitride (mC3N4) (1.77 V vs. RHE). Electrochemical impedance spectroscopy (EIS) and chronoamperometry (i-t) studies on SRu-mC3N4 show a smaller charge-transfer resistance (RCt) of 2950 Ω and long-term potential, as well as current stability of 50 h and 20 mA/cm2, respectively. Herein, an efficient and enhanced activity toward HzOR was demonstrated on SRu-mC3N4 from its synergistic platform over highly porous C3N4, possessing large and independent active sites, and improving the subsequent large-scale reaction.</jats:p>

Topics
  • porous
  • density
  • Carbon
  • nitride
  • electrochemical-induced impedance spectroscopy
  • current density
  • chronoamperometry
  • voltammetry
  • Ruthenium