Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dudek, Kazimiera

  • Google
  • 2
  • 8
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair14citations
  • 2020Residual Stresses and Surface Roughness Analysis of Truncated Cones of Steel Sheet Made by Single Point Incremental Forming11citations

Places of action

Chart of shared publication
Korzyńska, Katarzyna
1 / 1 shared
Korzynski, Mieczyslaw
1 / 1 shared
Neslušan, Miroslav
1 / 5 shared
Trzepieciński, Tomasz
1 / 26 shared
Krasowski, Bogdan
1 / 3 shared
Bochnowski, Wojciech
1 / 1 shared
Slota, Jan
1 / 2 shared
Kubit, Andrzej
1 / 7 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Korzyńska, Katarzyna
  • Korzynski, Mieczyslaw
  • Neslušan, Miroslav
  • Trzepieciński, Tomasz
  • Krasowski, Bogdan
  • Bochnowski, Wojciech
  • Slota, Jan
  • Kubit, Andrzej
OrganizationsLocationPeople

article

Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair

  • Korzyńska, Katarzyna
  • Korzynski, Mieczyslaw
  • Dudek, Kazimiera
Abstract

<jats:p>This study analysed the condition of the surface layer of valve stems made of 317Ti steel after polishing and burnishing. Surface roughness, microhardness, and residual stress tests were carried out. The tests were carried out to determine the effect of the condition of the surface layer (especially non-standard parameters of surface roughness) of the stems on the durability of valves and to determine the possibility of obtaining a favourable state by means of sliding burnishing. Significant differences were observed in the values of the roughness parameters that determine the tribological properties of the surface, and higher surface microhardness and residual compressive stresses were obtained after burnishing. The durability of the stem-graphite seal in a reciprocating movement was tested, and the failure-free operation time of valves with burnished stems was approximately four times longer, which is the premise for recommending sliding diamond burnishing as a finishing treatment for valve stems.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • steel
  • durability
  • polishing