Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luukka, Panja

  • Google
  • 14
  • 54
  • 84

Lappeenranta-Lahti University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022Characterization of Heavily Irradiated Dielectrics for Pixel Sensors Coupling Insulator Applications1citations
  • 2022Characterization of Heavily Irradiated Dielectrics for Pixel Sensors Coupling Insulator Applications1citations
  • 2022Multispectral photon-counting for medical imaging and beam characterization - A project review1citations
  • 2022Multispectral photon-counting for medical imaging and beam characterization — A project review1citations
  • 2021AC-coupled n-in-p pixel detectors on MCz silicon with atomic layer deposition (ALD) grown thin film5citations
  • 2021Cadmium Telluride X-ray pad detectors with different passivation dielectrics7citations
  • 2021Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detection2citations
  • 2020Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide10citations
  • 2019Effects of Defects to the Performance of CdTe Pad Detectors in IBIC Measurements2citations
  • 2019Cadmium Telluride X-ray pad detectors with different passivation dielectrics7citations
  • 2017Advanced processing of CdTe pixel radiation detectors24citations
  • 2016Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors9citations
  • 2016Processing of n(+)/p(-)/p(+) strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates14citations
  • 2014Pixel Detector Upgrade of CMS Experimentcitations

Places of action

Chart of shared publication
Ott, Jennifer
12 / 22 shared
Bharthuar, Shudhashil
7 / 7 shared
Kirschenmann, Stefanie
6 / 6 shared
Mizohata, Kenichiro
2 / 99 shared
Kramarenko, Nikita
4 / 4 shared
Koponen, Pirkitta
5 / 6 shared
Brucken, Jens Erik
6 / 6 shared
Golovleva, Maria
8 / 8 shared
Tuominen, Eija
6 / 8 shared
Härkönen, Jaakko
8 / 10 shared
Bezak, Mihaela
5 / 5 shared
Gädda, Akiko
9 / 12 shared
Karadzhinova-Ferrer, Aneliya Georgieva
7 / 7 shared
Brücken, Erik
2 / 3 shared
Karadzhinova, Aneliya
1 / 1 shared
Kalliokoski, Matti
7 / 8 shared
Winkler, Alexander
6 / 8 shared
Särkkä, Simo
2 / 2 shared
Siiskonen, Teemu
2 / 2 shared
Turpeinen, Raimo
2 / 2 shared
Tikkanen, Joonas Samuli
2 / 2 shared
Karjalainen, Ahti
2 / 2 shared
Petrow, Henri
2 / 2 shared
Emzir, Muhammad
2 / 2 shared
Karadzhinova-Ferrer, Aneliya
3 / 3 shared
Tuovinen, Esa
2 / 3 shared
Litichevskyi, Vladyslav
3 / 3 shared
Chmill, Valery
1 / 1 shared
Martikainen, Laura
2 / 3 shared
Bezak, M.
1 / 5 shared
Harkonen, J.
1 / 1 shared
Tuovinen, E.
2 / 3 shared
Gadda, A.
2 / 3 shared
Naaranoja, Tiina Sirea
1 / 1 shared
Härkonen, J.
1 / 2 shared
Golovleva, M.
1 / 7 shared
Vähänen, Sami
2 / 5 shared
Tikkanen, J.
1 / 2 shared
Peltola, T.
1 / 8 shared
Niinistö, J.
1 / 5 shared
Arsenovich, Tatyana
3 / 3 shared
Ritala, Mikko
1 / 194 shared
Junkes, A.
2 / 2 shared
Mäkelä, Maarit
1 / 3 shared
Härkönen, J.
2 / 6 shared
Gädda, A.
2 / 7 shared
Li, Z.
1 / 66 shared
Mäenpää, T.
1 / 1 shared
Wu, X.
1 / 36 shared
Kalliopuska, Juha
1 / 1 shared
Tuovinen, Esa Veikko
1 / 1 shared
Mäenpää, Teppo H.
1 / 1 shared
Kassamakov, Ivan Vladislavov
1 / 1 shared
Peltola, Timo
1 / 3 shared
Chart of publication period
2022
2021
2020
2019
2017
2016
2014

Co-Authors (by relevance)

  • Ott, Jennifer
  • Bharthuar, Shudhashil
  • Kirschenmann, Stefanie
  • Mizohata, Kenichiro
  • Kramarenko, Nikita
  • Koponen, Pirkitta
  • Brucken, Jens Erik
  • Golovleva, Maria
  • Tuominen, Eija
  • Härkönen, Jaakko
  • Bezak, Mihaela
  • Gädda, Akiko
  • Karadzhinova-Ferrer, Aneliya Georgieva
  • Brücken, Erik
  • Karadzhinova, Aneliya
  • Kalliokoski, Matti
  • Winkler, Alexander
  • Särkkä, Simo
  • Siiskonen, Teemu
  • Turpeinen, Raimo
  • Tikkanen, Joonas Samuli
  • Karjalainen, Ahti
  • Petrow, Henri
  • Emzir, Muhammad
  • Karadzhinova-Ferrer, Aneliya
  • Tuovinen, Esa
  • Litichevskyi, Vladyslav
  • Chmill, Valery
  • Martikainen, Laura
  • Bezak, M.
  • Harkonen, J.
  • Tuovinen, E.
  • Gadda, A.
  • Naaranoja, Tiina Sirea
  • Härkonen, J.
  • Golovleva, M.
  • Vähänen, Sami
  • Tikkanen, J.
  • Peltola, T.
  • Niinistö, J.
  • Arsenovich, Tatyana
  • Ritala, Mikko
  • Junkes, A.
  • Mäkelä, Maarit
  • Härkönen, J.
  • Gädda, A.
  • Li, Z.
  • Mäenpää, T.
  • Wu, X.
  • Kalliopuska, Juha
  • Tuovinen, Esa Veikko
  • Mäenpää, Teppo H.
  • Kassamakov, Ivan Vladislavov
  • Peltola, Timo
OrganizationsLocationPeople

article

Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detection

  • Bezak, M.
  • Tuominen, Eija
  • Ott, Jennifer
  • Harkonen, J.
  • Bharthuar, Shudhashil
  • Tuovinen, E.
  • Luukka, Panja
  • Brucken, Jens Erik
  • Gadda, A.
Abstract

<p>Radiation hardness is in the focus of the development of particle tracking and photon imaging detector installations. Semiconductor detectors, widely used in particle physics experiments, have turned into capacitive-coupled (AC-coupled) detectors from the originally developed conductively coupled (DC-coupled) detectors. This is due to the superior isolation of radiation-induced leakage current in AC-coupled detectors. However, some modern detector systems, such as the tracking detectors in the CERN LHC CMS or ATLAS experiments, are still DC-coupled. This originates from the difficulty of implementing AC coupling on very small pixel detector areas. In this report, we describe our advances in the detector processing technology. The first topic is the applications of the atomic layer deposition processing technology, which enables the very high densities of capacitance and resistance that are needed when the dimensions of the physical segmentation of pixel detectors need to be scaled down. The second topic is the flip-chip/bump-bonding interconnection technology, which is necessary in order to manufacture pixel detector modules on a large scale with a more than 99% yield of noise-free and faultless pixels and detector channels.</p>

Topics
  • impedance spectroscopy
  • experiment
  • semiconductor
  • hardness
  • atomic layer deposition