People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bastos Da Silva Fanta, Alice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Thermal stability of hierarchical microstructural features in additively manufactured stainless steelcitations
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scatteringcitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2021Recent developments for the characterization of crystals and defects at the nanoscale using on-axis TKD in SEM
- 2021Challenges and perspectives of Transmission Kikuchi Diffraction for nanocrystalline materials characterization
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO2 Substratescitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO 2 Substratescitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2018Optimal microstructural design for high thermal stability of pure FCC metals based on studying effect of twin boundaries character and network of grain boundariescitations
- 2017Influence of Ti and Cr Adhesion Layers on Ultrathin Au Filmscitations
- 2017Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversioncitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2013Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD studycitations
- 20093-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM
- 2008Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni filmscitations
- 2007Orientation microscopy on nanostructured electrodeposited NiCo-Films
Places of action
Organizations | Location | People |
---|
document
Recent developments for the characterization of crystals and defects at the nanoscale using on-axis TKD in SEM
Abstract
In this paper, we describe the technique of on-axis transmission Kikuchi diffraction (TKD) in a scanning electron microscope and demonstrate its use in characterizing nanoscale crystal structures and defects in semiconductor materials and devices. We explain how we modified hardware and software to achieve an effective spatial resolution of 2 nm during orientation mapping without decreasing acquisition speed, indexing quality, and other performance parameters. The paper includes illustrations comparing sample-detector geometries for conventional EBSD, TKD, and on-axis TKD. It also presents examples of the types of images that can be obtained using on-axis TKD, including raw crystal orientation maps, diffraction patterns, pattern quality maps, time-resolved orientation maps showing microstructure evolution, and a sparse sample map showing the distribution of quantum dots on an electron transparent support film.