Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stolbovoy, V.

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019STUDY OF ADVANCED NANOSCALE ZRN/CRN MULTILAYER COATINGS1citations

Places of action

Chart of shared publication
Yelbolatuly, D.
1 / 1 shared
Simoes, S.
1 / 40 shared
Pogrebnjak, A.
1 / 2 shared
Beresnev, V.
1 / 1 shared
Maksakova, O.
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Yelbolatuly, D.
  • Simoes, S.
  • Pogrebnjak, A.
  • Beresnev, V.
  • Maksakova, O.
OrganizationsLocationPeople

article

STUDY OF ADVANCED NANOSCALE ZRN/CRN MULTILAYER COATINGS

  • Yelbolatuly, D.
  • Simoes, S.
  • Stolbovoy, V.
  • Pogrebnjak, A.
  • Beresnev, V.
  • Maksakova, O.
Abstract

The scientific interest in the investigation of nitride composites as protecting materials in tool and machining industries intensively increases. The good oxidation resistance of CrN single-layer films and high melting point, good chemical and thermal resistance of ZrN compound are motive factors for designing of multilayer composites composed of these metal nitrides. The suggested advantages of ZrN/CrN multilayer coatings as structural materials are the high-temperature resistance, high density and extreme hardness compared to the metal-nitride systems. Experimental ZrN/CrN multilayer coatings were deposited on AISI 321 steel substrates by using a cathodic arc evaporation device equipped with two high-purity metal Cr and Zr targets. Structural, chemical and morphological characteristics together with mechanical properties of multilayer composites were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Vickers hardness tester. SEM analysis revealed an increase of roughness and concentration of the droplets on the surface of the coatings when negative bias potential decreased to -70 V. The results of data obtained from the X-ray analysis showed (200) and (111) plane for ZrN and Cr2N phases as the most intense. The peak positions of ZrN were shifted towards lower diffraction angles comparing with bulk values and indicated a decrease of the interplanar distance and formation of compressive stresses. The calculated lattice strain values in the ZrN were higher than those of the CrN, indicated a greater presence of dislocations and defects in the lattice of ZrN. The averaged crystallite sizes in ZrN and CrN layers were 11-14 and 7-12 nm, respectively. The maximum value of the Vickers microhardness was found to be 6600HV0.01 that is 2.1 and 1.8 times greater than the corresponding values of binary CrN and ZrN coatings.

Topics
  • density
  • impedance spectroscopy
  • surface
  • compound
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • nitride
  • steel
  • composite
  • hardness
  • dislocation
  • Energy-dispersive X-ray spectroscopy
  • evaporation