People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gröger, Benjamin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Development and verification of a cure-dependent visco-thermo-elastic simulation model for predicting the process-induced surface waviness of continuous fiber reinforced thermosetscitations
- 2023Modelling of composite manufacturing processes incorporating large fibre deformations and process parameter interactions
- 2023Correction: Troschitz et al. Joining Processes for Fibre-Reinforced Thermoplastics: Phenomena and Characterisation. Materials 2022, 15, 5454
- 2022A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameterscitations
- 2022A Review on the Modeling of the Clinching Process Chain—Part II: Joining Processcitations
- 2022Review on mechanical joining by plastic deformationcitations
- 2022Development of a high-fidelity framework to describe the process-dependent viscoelasticity of a fast-curing epoxy matrix resin including testing, modelling, calibration and validationcitations
- 2022Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusionscitations
- 2022Warmforming flow pressing characteristics of continuous fibre reinforced thermoplastic compositescitations
- 2022Computed tomography investigation of the material structure in clinch joints in aluminium fibre-reinforced thermoplastic sheetscitations
- 2021Temperature dependent modelling of fibre-reinforced thermoplastic organo-sheet material for forming and joining process simulationscitations
- 2021Clinching of thermoplastic composites and metals - a comparison of three novel joining technologiescitations
- 2021Modelling of thermally supported clinching of fibre-reinforced thermoplastics: Approaches on mesoscale considering large deformations and fibre failurecitations
- 2019Experimental description of draping effects and their influence on structural behavior of fiber reinforced composites.
Places of action
Organizations | Location | People |
---|
document
Modelling of thermally supported clinching of fibre-reinforced thermoplastics: Approaches on mesoscale considering large deformations and fibre failure
Abstract
<p>Thermally supported clinching (Hotclinch) is a novel promising process to join dissimilar materials. Here, metal and fibre-reinforced thermoplastics (FRTP) are used within this single step joining process and without the usage of auxiliary parts like screws or rivets. For this purpose, heat is applied to improve the formability of the reinforced thermoplastic. This enables joining of the materials using conventional clinching-tools. Focus of this work is the modelling on mesoscopic scale for the numerical simulation of this process. The FTRP-model takes the material behaviour both of matrix and the fabric reinforced organo-sheet under process temperatures into account. For describing the experimentally observed phenomena such as large deformations, fibre failure and the interactions between matrix and fibres as well as between fibres themselves, the usage of conventional, purely Lagrangian based FEM methods is limited. Therefore, the combination of contact-models with advanced modelling approaches like Arbitrary-Lagrangian-Eulerian (ALE), Coupled-Eulerian-Lagrangian (CEL) and Smooth-ParticleHydrodynamics (SPH) for the numerical simulation of the clinching process are employed. The different approaches are compared with regard to simulation feasibility, robustness and results accuracy. It is shown, that the CEL approach represents the most promising approach to describe the clinching process.</p>