People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smolders, Adrianus Bernardus
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023An Open Hemispherical Resonant Cavity for Relative Permittivity Measurements of Fluid and Solid Materials at mm-Wave Frequenciescitations
- 2022Relative Permittivity Measurements With SIW Resonant Cavities at mm- Wave Frequenciescitations
- 2022Package Thickness Investigation of the U-Slot Patch Antenna for Beyond-5G Antenna-in-Package Applications
- 2022A Wide-Scanning Metasurface Antenna Array for 5G Millimeter-Wave Communication Devicescitations
- 2018Planar sensors for dielectric and magnetic materials measurementcitations
- 2016Broadband material characterization method using a CPW with a novel calibration techniquecitations
- 2016Review of the accuracy and precision of mm-wave antenna simulations and measurementscitations
Places of action
Organizations | Location | People |
---|
document
An Open Hemispherical Resonant Cavity for Relative Permittivity Measurements of Fluid and Solid Materials at mm-Wave Frequencies
Abstract
In this paper, we present a hemispherical Fabry-Pérot open cavity resonator based measurement technique to estimate the relative permittivity of dielectric materials. The open cavity is realized by combining a spherical and a planar mirror, suitable for the characterization of both solid and fluid materials in the frequency range from 25 GHz to 42 GHz. The planar mirror is surrounded by a 0.5 mm high metal wall which allows the reflector to be filled with the liquid material to characterize. The measurement method is based on the Gaussian beam theory, which allows extracting the dielectric properties of the material by analyzing the resonant frequency shift of the fundamental mode from, in this case, the reflection coefficient only. This is made possible thanks to the optimized shape of the coupling aperture.