People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seffer, Sarah
Laser Zentrum Hannover
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Investigations on laser beam welding of thin aluminum foils with additional filler wirecitations
- 2023Laser beam welding of brass with combined core and ring beamcitations
- 2022Laser beam brazing of aluminum alloys in XHV-adequate atmosphere with surface deoxidation by ns-pulsed laser radiationcitations
- 2022Investigations on laser beam welding of thin foils of copper and aluminum regarding weld seam quality using different laser beam sourcescitations
- 2022Investigations on the effect of standing ultrasonic waves on the microstructure and hardness of laser beam welded butt joints of stainless steel and nickel base alloycitations
- 2022Investigations on laser beam welding of thick steel plates using a high-power diode laser beam sourcecitations
- 2022Deep Learning-Based Weld Contour and Defect Detection from Micrographs of Laser Beam Welded Semi-Finished Productscitations
- 2021Investigations on laser welding of dissimilar joints of stainless steel and copper for hot crack preventioncitations
- 2020Influence of Ultrasound on Pore and Crack Formation in Laser Beam Welding of Nickel-Base Alloy Round Barscitations
Places of action
Organizations | Location | People |
---|
article
Investigations on laser beam welding of thin aluminum foils with additional filler wire
Abstract
<jats:p>Nowadays, battery-electric drives and energy storage are elected to be the future technologies. In the manufacturing of parts for electric applications, laser beam welding is an appropriate and favorable welding method. The characteristics of high welding speed, local heat input, and the contact-free process allow efficient and automatable processes. For electrodes, mainly copper and aluminum are used. Many foils with thicknesses of an area of 10 μm have to be connected to create battery cells. Different than expected, aluminum is a more challenging material to produce than others. Pore formation is also extended in aluminum due to the presence of air between the foils. The connecting cross section is thereby reduced. Furthermore, there is detachment in the fusion area and a high weld seam undercut. In addition to insufficient clamping, a lack of material reduces strength and, thus, usability. In the research presented here, the use of aluminum filler wire (AA 1050A) and shielding gas are investigated for the application of welding 40 aluminum foils (AA 1050A) with a thickness of 15 μm to an aluminum sheet with a thickness of 2 mm using infrared laser beam wavelength. The aims of the process development are welds with high connection widths and high quality as well as reproducibility to provide excellent mechanical properties and the highest electrical conductivity.</jats:p>