People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vasileiou, Anastasia N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Modelling the Effect of Residual Stresses on Damage Accumulation Using a Coupled Crystal Plasticity Phase Field Fracture Approach
- 2023Investigating the suitability of using a single heat transfer coefficient in metal casting simulation: An inverse approach
- 2020Electron beam weld modelling of ferritic steel: effect of prior-austenite grain size on transformation kineticscitations
- 2020Effects of dilution on the hardness and residual stresses in multipass steel weldmentscitations
- 2019Residual stresses in arc and electron-beam welds in 130 mm thick SA508 steelcitations
- 2019Residual stresses in arc and electron-beam welds in 130 mm thick SA508 steelcitations
- 2019Characterisation and modelling of tempering during multi-pass weldingcitations
- 2019Measurement and Prediction of Phase Transformation Kinetics in a Nuclear Steel During Rapid Thermal Cyclescitations
- 2019Effects of dilution on alloy content and microstructure in multi-pass steel weldscitations
- 2018Prediction of grain boundary evolution in an titanium alloy substrate using a novel phase field model coupled with a semi-analytical thermal solution
- 2018Residual Stress Distributions in Arc, Laser and Electron-Beam Welds in 30 mm Thick SA508 Steelcitations
- 2017An Evaluation of Multipass Narrow Gap Laser Welding as a Candidate Process for the Manufacture of Nuclear Pressure Vesselscitations
- 2017The impact of transformation plasticity on the electron beam welding of thick-section ferritic steel componentscitations
- 2016Residual stress distributions in laser and gas metal-arc welded high-strength steel platescitations
- 2016Residual stresses in thick-section electron beam welds in RPV steelscitations
- 2011Numerical simulation of sand casting of an aluminium part
Places of action
Organizations | Location | People |
---|
document
Investigating the suitability of using a single heat transfer coefficient in metal casting simulation: An inverse approach
Abstract
<jats:p>Abstract. In metal casting simulation the Heat Transfer Coefficient (HTC) is unknown as it depends on melt and mold materials, on the casting modulus at different regions of the casting and on local conditions at the mold-casting gap. In this paper, thermocouple measurements at three regions of a brass investment casting provided reference cooling curves. A genetic algorithm (GA) determined the optimum 3-step time-dependent HTC for the whole of the casting in a simulation program for which cooling curves are as close as possible to the reference curves. The resulting prediction of solidification times is satisfactory but prediction of qualitative characteristics such as start / end of solidification in different regions was not accurate enough. </jats:p>