People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guillemoles, Jean-François
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023The Role of Nonequilibrium LO Phonons, Pauli Exclusion, and Intervalley Pathways on the Relaxation of Hot Carriers in InGaAs Multi-Quantum-Well Structures
- 2023Breaking 1.7V open circuit voltage in large area transparent perovskite solar cells using bulk and interfaces passivation.citations
- 2023The modulated photoluminescence technique versus temperature: opportunities for better determination of trap parameters
- 2023The role of nonequilibrium LO phonons, Pauli exclusion, and intervalley pathways on the relaxation of hot carriers in InGaAs/InGaAsP multi-quantum-wellscitations
- 2022In – depth chemical and optoelectronic analysis of triple-cation perovskite thin films by combining XPS profiling and PL Imagingcitations
- 2021Mapping Transport Properties of Halide Perovskites via Short-Time-Dynamics Scaling Laws and Subnanosecond-Time-Resolution Imagingcitations
- 2021In – depth chemical and optoelectronic analysis of triple-cation perovskite thin films by combining XPS profiling and PL Imagingcitations
- 2021The influence of relative humidity upon Cu(In,Ga)Se2 thin-film surface chemistry: an X-ray photoelectron spectroscopy studycitations
- 2020Backside light management of 4-terminal bifacial perovskite/silicon tandem PV modules evaluated under realistic conditionscitations
- 2020Determination of photo-induced Seebeck coefficient for hot carrier solar cell applications
- 2019MIS Structures for Solar Cells Perimeter Passivation
- 2019Cu depletion on Cu(In,Ga)Se2 surfaces investigated by chemical engineering: An x-ray photoelectron spectroscopy approachcitations
- 2017Cathodoluminescence mapping for the determination of n-type doping in single GaAs nanowires
- 2017Tuning the chemical properties of europium complexes as downshifting agents for copper indium gallium selenide solar cellscitations
- 2017EuIII‐Based Nanolayers as Highly Efficient Downshifters for CIGS Solar Cellscitations
- 2014Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaicscitations
- 2014Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaicscitations
Places of action
Organizations | Location | People |
---|
document
Breaking 1.7V open circuit voltage in large area transparent perovskite solar cells using bulk and interfaces passivation.
Abstract
fficient semi-transparent solar cells can trigger the adoption of building integrated photovoltaics. Halide perovskites are particularly suitable in this respect owing to their tunable bandgap. Main drawbacks in the development of transparent perovskite solar cells are the high Voc deficit and the difficulties in depositing thin films over large area substrates, given the low solubility of bromide and chloride precursors. In this work, we develop a 2D and passivation strategies for the high band-gap Br perovskite able to reduce charge recombination and consequently improving the open-circuit voltage. We demonstrate 1cm2 perovskite solar cells with Voc up to 1.73 V (1.83 eV QFLS) and a PCE of 8.2%. The AVT exceeds 70% by means of a bifacial light management and a record light utilization efficiency of 5.72 is achieved, setting a new standard for transparent photovoltaics. Moreover, we show the high ceiling of our technology towards IoT application due to a bifaciality factor of 87% along with 17% PCE under indoor lighting. Finally, the up-scaling has been demonstrated fabricating 20cm2-active area modules with PCE of 7.3% and Voc per cell up to 1.65V.