Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Almeida, Joana

  • Google
  • 2
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Assessment on tungsten mining residues potential as partial cement replacement3citations
  • 2020Assessment on tungsten mining residues potential as partial cement replacement3citations

Places of action

Chart of shared publication
Faria, Paulina
2 / 47 shared
Ribeiro, Alexandra B.
2 / 5 shared
Santos Silva, António
1 / 3 shared
Silva, António Santos
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Faria, Paulina
  • Ribeiro, Alexandra B.
  • Santos Silva, António
  • Silva, António Santos
OrganizationsLocationPeople

article

Assessment on tungsten mining residues potential as partial cement replacement

  • Faria, Paulina
  • Ribeiro, Alexandra B.
  • Silva, António Santos
  • Almeida, Joana
Abstract

Electroremediation and deep eutectic solvents are well-documented clean-up processes for metals extraction from solid matrices. Depending on the purpose, these treatments may generate a residue free of pollutants and critical raw materials. Several studies were conducted to re-insert treated secondary resources in building materials. However, there is a research gap in the improvement of reactive properties of these secondary resources. In addition, there is a lack of pozzolans that can optimize cementitious materials. This study investigates the pozzolanic reactivity of tungsten mining residues after receiving electrodialytic treatment in the presence of natural deep eutectic solvents. In all cases, thermal treatment after electroremediation potentiated the pozzolanic reactivity of tungsten mining residues, between 64% to 87%. The introduction of these pozzolanic resources in cementitious-based materials may increase their performance, enlarge the range of applications in the construction industry, reduce the environmental impact, and contribute to a circular economy.

Topics
  • impedance spectroscopy
  • extraction
  • reactive
  • cement
  • tungsten