People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Drinkwater, Bw
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2021Exploring high-frequency eddy-current testing for sub-aperture defect characterisation using parametric-manifold mappingcitations
- 2018Characterisation of carbon fibre-reinforced polymer composites through radon-transform analysis of complex eddy-current datacitations
- 2017Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducercitations
- 2016Ultrasonic Array Imaging Through an Anisotropic Austenitic Steel Weld Using an Efficient Ray-tracing Algorithmcitations
- 2014Accurate modelling of anisotropic effects in austenitic stainless steel welds
- 2013Detection of Fibre Waviness Using Ultrasonic Array Scattering Datacitations
- 2013Imaging composite material using ultrasonic arrayscitations
- 2013Effective dynamic moduli and density of fiber-reinforced composites
- 2012Monte Carlo inversion of ultrasonic array data to map anisotropic weld propertiescitations
- 2012Autofocus imaging
- 2012Imaging composite material using ultrasonic arrayscitations
- 2012Effective dynamic constitutive parameters of acoustic metamaterials with random microstructurecitations
- 2010Ultrasonic condition monitoring using thin-film piezoelectric sensorscitations
- 2010Inspection of single crystal aerospace components with ultrasonic arrayscitations
- 2009Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive jointscitations
- 2008Acoustic emission from pitting corrosion in stressed stainless steel platecitations
- 2006Oil film measurement in polytetrafluoroethylene-faced thrust pad bearings for hydrogenerator applicationscitations
- 2006Guided Wave Acoustic Emission from Fatigue Crack Growth in Aluminium Plate
- 2006Monitoring of lubricant film failure in a ball bearing using ultrasoundcitations
- 2006Intra-laminar cracking in CFRP laminatescitations
- 2006Global crack detection for aircraft monitoring using bispectral analysis
- 2006Intra-laminar cracking in CFRP laminates: observations and modelling ; Intra-laminar cracking in CFRP laminates:Observations and modellingcitations
- 2004The on-line measurement of lubricant film thickness for condition monitoringcitations
- 2003An ultrasonic wheel-array sensor and its application to aerospace structurescitations
- 2003The measurement of lubricant-film thickness using ultrasoundcitations
Places of action
Organizations | Location | People |
---|
article
The on-line measurement of lubricant film thickness for condition monitoring
Abstract
The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. The transducer is used to both emit and receive wide-band ultrasonic pulses. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using fluid wedges at ambient pressure between flat and curved surfaces. Experiments on the elastohydrodynamic film formed between a ball sliding on a flat were performed. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions. Similar measurements have been made on the oil film between the balls and outer raceway of a deep groove ball bearing.