People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Costa, Pedro M. F. J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Anisotropic Superconducting Nb<sub>2</sub>CT<i><sub>x</sub></i> MXene Processed by Atomic Exchange at The Wafer Scalecitations
- 2023Graphene nanowalls grown on copper meshcitations
- 2021Scanning Transmission Electron Microscopy Investigations of an Efficiency Enhanced Annealed Cu(In1-xGax)Se2 Solar Cells with Sputtered Zn(O,S) Buffer Layer
- 2019Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped Geobacter sulfurreducens as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reactioncitations
- 2018Green Nanotechnology from Waste Carbon-Polyaniline Compositecitations
- 2018Green Nanotechnology from Waste Carbon-Polyaniline Composite ; Generation of Wavelength-Independent Multiband Photoluminescence for Sensitive Ion Detectioncitations
- 2016Characterization of a porous carbon material functionalized with cobalt-oxide/cobalt core-shell nanoparticles for lithium ion battery electrodes
- 2015Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devicescitations
Places of action
Organizations | Location | People |
---|
article
Characterization of a porous carbon material functionalized with cobalt-oxide/cobalt core-shell nanoparticles for lithium ion battery electrodes
Abstract
<p>A nanoporous carbon (C) material, functionalized with Cobalt-Oxide/Cobalt (CoO/Co) core-shell nanoparticles (NPs), was structurally and chemically characterized with transmission electron microcopy (TEM) while its electrochemical response for Lithium ion battery (LIB) applications was evaluated as well. The results herein show that the nanoporous C material was uniformly functionalized with the CoO/Co core-shell NPs. Further the NPs were crystalline with fcc-Type lattice on the Co2+ oxide shell and hcp-Type core of metallic Co0. The electrochemical study was carried out by using galvanostatic charge/discharge cycling at a current density of 1000 mA g-1. The potential of this hybrid material for LIB applications was confirmed and it is attributed to the successful dispersion of the Co2+/ Co0 NPs in the C support.</p>