People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Herzog, Dirk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Optimization of large-scale aeroengine parts produced by additive manufacturing
- 2023Numerical and experimental investigation of the geometry dependent layer-wise evolution of temperature during laser powder bed fusion of Ti–6Al–4V
- 2023Development of a Hydrogen Metal Hydride Storage Produced by Additive Manufacturing
- 2023Predictive modeling of lattice structure design for 316L stainless steel using machine learning in the L-PBF process
- 2023Poster: Development of a Hydrogen Metal Hydride Storage Produced by Additive Manufacturing
- 2022Thermal conductivity of Ti-6Al-4V in laser powder bed fusion
- 2022Design Guidelines For Green Parts Manufactured With Stainless Steel In The Filament Based Material Extrusion Process For Metals (MEX/M)
- 2021Material modeling of Ti–6Al–4V alloy processed by laser powder bed fusion for application in macro-scale process simulation
- 2020Productivity optimization of laser powder bed fusion by hot isostatic pressing
- 2017Characterization of the anisotropic properties for laser metal deposited Ti-6Al-4 V
- 2017Process monitoring of laser remote cutting of carbon fiber reinforced plastics by means of reflecting laser radiationcitations
- 2016Laser cutting of carbon fibre reinforced plastics of high thicknesscitations
- 2016Analysis of residual stress formation in additive manufacturing of Ti-6Al-4V
- 2016Additive manufacturing of metalscitations
- 2015Investigations on the process strategy of laser remote cutting of carbon fiber reinforced plastics with a thickness of more than 5 MM
- 2015Fatigue Performance of Laser Additive Manufactured Ti–6al–4V in Very High Cycle Fatigue Regime up to 1E9 Cycles
- 2015Fatigue Performance of Laser Additive Manufactured Ti–6al–4V in Very High Cycle Fatigue Regime up to 1E9 Cycles
- 2014Low coherence interferometry in selective laser melting
- 2011Surface texturing by laser cladding
- 2008Laser welding of heat treatable steel during induction hardening
- 2008Inductively supported laser beam welding of high and ultra high strength steel grades
- 2008Laser welding of shape memory alloys for medical applications
Places of action
Organizations | Location | People |
---|
article
Productivity optimization of laser powder bed fusion by hot isostatic pressing
Abstract
Laser Powder Bed Fusion is today used for the serial production of parts, e.g. in the medical and aerospace markets. One of the major limitations is the comparatively low build rate of the process, which leads to low productivity and high costs when compared to conventional processes. Current approaches such as the use of multi-laser systems help increasing the build rate but come at higher investment costs. Overall, the low productivity limits the number of business cases for Laser Powder Bed Fusion and hinders the market uptake in more cost-sensitive industries. This paper suggests a combined approach of Laser Powder Bed Fusion and subsequent Hot Isostatic Pressing as a method to improve productivity. Hot Isostatic Pressing is often used as a post-process to eliminate any remnant porosity. It is shown that the process, however, is able to densify specimens that come out of Laser Powder Bed Fusion with an as-build density as low as 95 %. This opens up a larger process window for the initial Laser Powder Bed Fusion step. Experimental investigations are presented using two commercial Laser Powder Bed Fusion systems with the widely used titanium alloy Ti-6Al-4V. Instead of optimizing the process for the highest possible density, the parameters were optimized to yield the highest possible speed while maintaining a density above 95 %. A scan speed increase of 67 % was achieved and the specimens were then successfully compacted to above 99.8 % density in the Hot Isostatic Processing step. The high-speed parameter set was then applied to a demonstrator build job, where it leads to an overall saving of 26 % of build time. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.