People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palanisamy, Sivasubramanian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Influence of washing with sodium lauryl sulphate (SLS) surfactant on different properties of ramie fibrescitations
- 2024A Hybrid Design of Experiment Approach in Analyzing the Electrical Discharge Machining Influence on Stir Cast Al7075/B4C Metal Matrix Compositescitations
- 2024Effect of Stacking Sequence on Mechanical and Water Absorption Characteristics of Jute/Banana/Basalt Fabric Aluminium Fibre Laminates With Diamond Microexpanded Meshcitations
- 2024Mechanical, morphological and wear resistance of natural fiber / glass fiber-based polymer compositescitations
- 2024Evaluation of mechanical properties and Fick’s diffusion behaviour of aluminum-DMEM reinforced with hemp/bamboo/basalt woven fiber metal laminates (WFML) under different stacking sequencescitations
- 2023Selection and processing of natural fibers and nanocellulose for biocomposite applications: A brief reviewcitations
- 2023Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocompositescitations
- 2023Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocomposites
- 2023A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer compositescitations
- 2023Natural Fibres-Based Bio-Epoxy Composites _ Epoxy-Based Biocompositescitations
- 2021Effect of Alkali Treatment on the Properties of Acacia Caesia Bark Fibrescitations
- 2021Mechanical Properties of Phormium Tenax Reinforced Natural Rubber Compositescitations
Places of action
Organizations | Location | People |
---|
article
Selection and processing of natural fibers and nanocellulose for biocomposite applications: A brief review
Abstract
<jats:p>In this study the recent developments in raw materials, manufacturing processes, and applications of natural fiber composites (NFCs) were reviewed. Natural fibers can represent a substitute for man-made fibers (including glass, aramid, and carbon) in a variety of biocomposite applications. Physical and chemical properties of the natural fibers are given and compared with the synthetic fibers. Advantages and disadvantages of NFCs in comparison with synthetic fibers such as glass and carbon fibers have been proposed. Criteria are described for the selection and processing of natural fibers for polymer composites used in different sectors such as automotive and building industries. The nanocellulose production methods, unique properties, and its recent industrial application in various sectors are given. This short review on NFCs considers their chemical, physical, and mechanical characteristics, as well as their various applications.</jats:p>